
Pointer Programs and
Undirected Reachability

Martin Hofmann Ulrich Schöpp

Ludwig-Maximilians-Universität München

LICS 2009

Pointer Programs and Logarithmic Space

The complexity class LOGSPACE is defined by Turing Machines with
logarithmic space usage.

read-only input tape

work tape

write-only output tape

In practice, LOGSPACE algorithms are usually intended to operate
on structured data.

Inputs are accessed by abstract operations, bit-level encoding
details are not important.

Pure Pointer Programs

Many LOGSPACE algorithms are presented as pointer programs that
do not inspect or manipulate bit-level encodings.

Pure Pointer Programs
• read-only input, accessed by a constant number of pointers
• abstract pointers without internal structure
• no manipulation of large unstructured data
(e.g. tapes of a Turing Machine)

How good are pure pointer programs as an intuition for LOGSPACE?

Are there natural LOGSPACE problems that cannot be expressed as
pure pointer programs?

Where does one need bit-level encodings or unstructured data?

Undirected s-t-Reachability

USTCON — Are s and t connected by an undirected path?

s
t

[Reingold 2005] shows that this problem is in LOGSPACE.

Reingold's algorithm is not a pure pointer program — it uses
counting registers of logarithmic size in addition to pointers.

We show that there is no pure pointer program for USTCON.

Pure Pointer Language (PURPLE)

Simple while-language with forall-iteration:

skip | M ; M | xΓ := tΓ | xbool := tbool | if tbool then M else M

| while tbool do M | forall xΓ do M

Terms for graph nodes and booleans: 3

1 2 3

1

2
tΓ ::= xΓ | s | t | tΓ.succ(i)

tbool ::= xbool | tΓ = tΓ | usual boolean combinations

The iteration order in the forall-loops is unspecified: To decide a
problem, a program must give the right answer regardless of the
order in which the nodes are presented in the forall-loops.

Iteration with Unspecified Order

Iteration in PURPLE

Examples
• Parity

even := true;
forall x do even :=¬even

• Checking for the existence of a node with a loop
1

hasloop := false;
forall x do hasloop := hasloop ∨ (x = x.succ(1))

Iteration vs. Total Ordering
• total ordering can be used for iteration
• total ordering also allows one to encode arbitrary data in
graph nodes

• unspecified order in forall-loops prevents unwanted
encoding of arbitrary data [H. & Sch. 2008]

Other Formalisms

PURPLE subsumes other formalisms for programming with abstract
pointers.

Jumping Automata on Graphs (JAGs) [Cook & Rackoff 1980]
• automata version of forall-free PURPLE programs
• JAGs cannot reach isolated components of the input graph

Deterministic Transitive Closure (DTC) logic for locally ordered
graphs [Etessami & Immerman 1995].

• first-order logic with deterministic transitive closure,
variables range over graph nodes

• PURPLE can evaluate DTC-formulae
• PURPLE refined quantification ∀, ∃ into iteration
• DTC-logic cannot express parity

Pointer Programs and Undirected Reachability

JAG

DTC

PURPLE

LOGSPACE

iteration
non-abstract
 pointers

abstract pointers

NNJAG

...

Pointer Programs and Undirected Reachability

JAG

DTC

PURPLE

LOGSPACE

iteration
non-abstract
 pointers

abstract pointers

NNJAG

...

USTCON [Reingold 2005]

USTCON [Cook & Rackoff 1980]JAG

LOGSPACE

DTC

Pointer Programs and Undirected Reachability

JAG

DTC

PURPLE

LOGSPACE

iteration
non-abstract
 pointers

abstract pointers

NNJAG

...

USTCON [Reingold 2005]

USTCON [Cook & Rackoff 1980]JAG

LOGSPACE

DTC

USTCONPURPLE

Pointer Programs and Undirected Reachability

Theorem There is no PURPLE program that decides s-t-reachability
in undirected graphs of degree 3.

Corollary There is no DTC-formula for locally ordered graphs that
decides s-t-reachability in undirected graphs of degree 3.

Without forall-loops

Theorem [Cook & Rackoff 1980]
There is no forall-free PURPLE program that decides
s-t-reachability in undirected graphs of degree 3.

• Suppose there exists such a program.
• Construct graph in which program is confined to the blue part
(can assume all variables to be on s or t initially).

s
t

• Purported program gives the same result if we remove the
edge between the two components.

Locality of forall-free programs

Cook & Rackoff's proof does not generalise to PURPLE programs
with forall loops.

We use a generalisation of Cook & Rackoff's method to show that
forall-free programs are confined to very small areas of certain
graphs.

s
t

PURPLE cannot decide Undirected Reachability

Assume a PURPLE program M decides USTCON.

It suffices to construct a graph of the form

s

t

that is accepted by one run of M .

PURPLE cannot decide Undirected Reachability

Show that M can be implemented by a loop-free program N on a
specially constructed graph.

From any start configuration, N reaches an end configuration that
can also be reached by one run of M .

Graph has homogeneous structure and diameter larger than twice
the range of N .

⇒ N cannot distinguish between

t

s

t

s

and

⇒ One run of M accepts the left graph

PURPLE cannot decide Undirected Reachability

Show that M can be implemented by a loop-free program N on a
specially constructed graph.

From any start configuration, N reaches an end configuration that
can also be reached by one run of M .

Graph has homogeneous structure and diameter larger than twice
the range of N .

⇒ N cannot distinguish between

t

s

t

s

and

⇒ One run of M accepts the left graph

Eliminating loops from PURPLE programs

On a very special class of graphs, (one run of) each PURPLE program
can be implemented by a loop-free program.

while-loops can be unfolded into nested forall-loops.

Elimination of forall-loops by induction on the program.

Eliminating loops from PURPLE programs

Choose the iteration order so that at the end all variables lie in a
small neighbourhood of the original positions.

Simulate this step by a (huge) loop-free program that can fully
explore the blue neighbourhood.

The graph is so large that after the elimination of all loops, its
diameter is still more than twice the range of the resulting program.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
There exists a (small enough) number r such that:
If in each iteration step we place x at least 2r away from all other
variables, then at any time all variables are an r-neighbourhood of

• the original variable positions; or
• the first or last few choices for x.

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

Choosing the Iteration Order for forall x do M

• Range of while true do M ′ can be bounded by small r.
(by graph construction and a generalisation of the argument of
[Cook & Rackoff 1980] — formalised in Coq [Sch., LPAR 2008])

⇒ Moves of both programs repeat periodically.

⇒ Variables must be r-close to first or last few jump destinations.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Use sightseer enumeration:
At any time the last few nodes
are far appart.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Use sightseer enumeration:
At any time the last few nodes
are far appart.

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Use sightseer enumeration:
At any time the last few nodes
are far appart.

3. Next few destinations in vicinity

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Use sightseer enumeration:
At any time the last few nodes
are far appart.

3. Next few destinations in vicinity

No variable is left outside grey area!

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Use sightseer enumeration:
At any time the last few nodes
are far appart.

3. Next few destinations in vicinity

No variable is left outside grey area!4. Remaining nodes (from grey area)

Choosing the Iteration Order for forall x do M

1. How do the variable positions depend on the iteration order?
As long as all iteration jumps are 2r away from all other variables,
the final variable positions will be r-close to original positions or the
first/last few jump destinations.

2. Choose a graph enumeration so that at the end all variables are
close to the original positions.

Find an enumeration that ends with
all variables in the blue area.
Start with a smaller area around the
initial positions and iterate as follows:

1. First few destinations in vicinity

2. Enumerate all nodes outside the
 grey area

Use sightseer enumeration:
At any time the last few nodes
are far appart.

3. Next few destinations in vicinity

No variable is left outside grey area!4. Remaining nodes (from grey area)

Eliminating loops from PURPLE programs

On a very special class of graphs, (one run of) each PURPLE program
can be implemented by a loop-free program.

The loop-free program has limited range and therefore cannot
distinguish between

t

s

t

s

and

⇒ PURPLE cannot decide s-t-reachability in undirected graphs.

Graph Construction

The graph

s

t

consists of two disjoint copies of a Cayley Graph.

• Nodes are the elements of a group G.
• Edges are determined by a generating set S of the group.
For all g ∈ G and s ∈ S there is an edge from g to g · s.

Graph Construction

We use a group with
• a huge set of elements,
• a small set of generators,
• a small exponent.

The exponent of G is the smallest number exp(G) such that

∀g ∈ G. gexp(G) = e .

The exponent determines how quickly a forall-free program
starts running around in circles.

Iterated Wreath Product / Lamplighter Construction

We construct such a group by iterating the wreath product
L(G) = (Z/2Z) ≀ G, starting with Z/mZ.

The Cayley graphs thus obtained may be described in terms of the
lamplighter construction.

• Cayley graph of G — layout of street lamps
• Cayley graph of L(G) — lighting of lamps by a lamplighter

• Nodes: lamplighter position and lamp states (G × 2G)
• Edges for switching on/off a lamp and for moving to a
neighbouring lamp

Iterated Wreath Product / Lamplighter Construction

Properties of Li(Z/mZ):

• Number of nodes: expi(m) = 22
. .

.2
m

(tower of height i)
• Number of generators: i + 2
• Exponent: m · 2i

Elimination of forall-loops from PURPLE program M results in a
loop-free program whose range is tower of constant height.

expr(i + m) = 22
. .

.2
i+m

(height depends on nesting depth of forall-loops, but not m or i)

If we increase i, then the size of the graph grows much faster than
the range of the forall-free program!

Iterated Wreath Product / Lamplighter Construction

Properties of Li(Z/mZ):

• Number of nodes: expi(m) = 22
. .

.2
m

(tower of height i)
• Number of generators: i + 2
• Exponent: m · 2i

Elimination of forall-loops from PURPLE program M results in a
loop-free program whose range is tower of constant height.

expr(i + m) = 22
. .

.2
i+m

(height depends on nesting depth of forall-loops, but not m or i)

If we increase i, then the size of the graph grows much faster than
the range of the forall-free program!

Iterated Wreath Product / Lamplighter Construction

Properties of Li(Z/mZ):

• Number of nodes: expi(m) = 22
. .

.2
m

(tower of height i)
• Number of generators: i + 2
• Exponent: m · 2i

Elimination of forall-loops from PURPLE program M results in a
loop-free program whose range is tower of constant height.

expr(i + m) = 22
. .

.2
i+m

(height depends on nesting depth of forall-loops, but not m or i)

If we increase i, then the size of the graph grows much faster than
the range of the forall-free program!

Eliminating loops from PURPLE programs
For each PURPLE program M we can choose i and m large enough
so that M can be implemented on two disjoint copies of Li(m) by a
loop-free program of small range.

The loop-free program cannot distinguish between

t

s

t

s

and

Theorem For all k there is a number d such that no while-free
PURPLE program with forall-depth k decides reachability on
undirected graphs of degree d.

Corollary There is no PURPLE program that decides s-t-reachability
in undirected graphs of degree 3.

Conclusion

Undirected s-t reachability cannot be programmed with
a constant number of abstract pointers.

• Analysis of popular programming methodology:
Using iterators to traverse large data structures

• Programming Language/Automata methods used to answer a
logical question about the expressivity of DTC-logic

• Iterated Wreath Products/Lamplighter Graphs, use of
exponent as a graph parameter

