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Abstract

The Geometry of Interaction (goi) was originally introduced by Girard in the context of
Linear Logic. Many of its recent applications concern the interpretation and analysis of func-
tional programming languages, with applications ranging from hardware synthesis to quantum
computation. In this paper we argue that for such programming-language applications it is
useful to understand the goi as a module system. We show that the structure of particle-style
goi models can naturally be expressed by a standard ML-like module system. This provides
a convenient, familiar formalism for working with the goi that abstracts from inessential im-
plementation details. With this view, the goi becomes a method of implementing ML-style
module systems for a wide range of programming languages. It can be considered as a higher-
order generalisation of system-level linking. The relation between the goi and the proposed
module system is established by developing a linear version of the F-ing modules approach
of Rossberg, Russo and Dreyer that uses a new decomposition of the exponential rules of
Linear Logic. We illustrate the utility of the modular view of the goi with examples on game
semantics and parallel evaluation.

1 Introduction
Modularity is very important for software construction. To make the development of large-scale
systems manageable, it is important to be able split them into small modules that can be specified,
developed and verified independently. Virtually all programming languages have support for some
kind of modular programming, the module system of Standard ML being a particularly expressive
example. For the effective application of formal methods, modularity is also becoming increasingly
important at a small scale. To make complex formal methods scale to programs of realistic size,
it is desirable to decompose even small programs into tiny fragments that are easier to treat with
formal methods than larger ones. To support such kinds of modular programming and reasoning,
a good understanding of modularity and module systems for programming languages is essential.

This paper connects the Geometry of Interaction (goi) to ML-style module systems. The
goi was originally proposed by Girard in the context of Linear Logic [9]. It has since found
many applications in programming languages, especially in situations where one wants to de-
sign higher-order programming languages for some restricted computational model. Examples
are hardware circuits [8], logspace-computation [5], quantum computation [12], distributed sys-
tems [7], etc. These applications use the particle-style variant of the goi, which constructs a
model of higher-order programming languages in terms of dialogues between simple interacting
entities (see Section 1.2 for an outline). If one lets the interacting entities be programs from the
restricted computational model, then such models can be used for compilation. Interpretation of
higher-order programs in the model becomes translation to the restricted computational setting.

This paper is about expressing the model constructions of the goi in simple familiar terms.
We relate the goi to a fairly standard ML-like module system, which allows us to express goi-
constructions in terms of the structures, signatures and functors that are familiar from Stan-
dard ML and OCaml.

From a practical point of view, the message of this paper is that the goi constructs an ML-
style module system even for very simple programming languages. The construction requires few
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assumptions and applies in particular to low-level languages that capture computation in some
restricted universe of computation. The module system constructed in this paper is higher-order
in the sense that modules can be parameterised over modules that themselves may depend on
external modules. This higher-order structure is useful, for example to implement higher-order
programming languages like Idealized Algol efficiently in computational models that lack higher-
order functions. The existing applications of the goi in loc. cit. provide more examples.

From a theoretical point of view, the message of this paper is that an ML-style module system
is a convenient formalism for working with the constructions of the goi. Presentations of the
goi usually start from scratch by giving a low-level implementation of constructions that are
essentially standard. One such presentation is outlined in Section 1.2 below. There are many
similar presentations of the goi that differ only in low-level implementation choices. For non-
experts interested in programming language applications of the goi, such constructions present
a hurdle to overcome before they can get to the actual applications of the goi. For experts, the
low-level details are not very interesting. We suspect that even the authors of such work would
prefer to not read or write them anymore. By capturing the constructions of the goi in terms of
a standard module system, we provide a formalism that abstracts from arbitrary implementation
details and that is already familiar to many programmers.

In the literature, it is common to use variants of System F to abstract from implementation
details in the goi. To understand its use in applications of the goi, one needs to understand
a particular goi-interpretation of System F. This may still be unfamiliar to non-experts and
we believe that the intuituion for this interpretation can be expressed more naturally using a
module system. But this is a minor point that may be just a matter of taste. More important
is that System F is not very convenient for working with abstract types via existentials, as can
be seen in e.g. [20, 22]. Indeed, the Standard ML module system can be seen as a mode of use
for System Fω [19] that makes programming with abstract types much more convenient for the
programmer.

From a technical point of view, the contribution of this paper is to work out the technical
details of an implementation of a module system that can be seen as a higher-order generalisation
of systems-level linking. It has zero overhead in applications that just need standard systems-level
linking, but it can also handle higher-order linking. We use the approach of F-ing modules [19]
for the definition of a module system for the structure of the goi, somewhat like what 1-ML [17]
does for System Fω. We also show that F-ing is suitable for practical implementation.

Let us now give a more concrete outline of the paper’s content.

1.1 From Systems-Level Linking to Higher-Order Modules
The first way to read this paper is from a practical point of view, as a generalisation of systems-level
linking to a proper higher-order ML-style module system.

We outline the idea using a simple generic first-order language. It has first-order types (integers,
pairs, disjoint unions, . . . ) and allows (mutually recursive) function definitions. A simple example
program should be enough to understand the features of this language (details appear in Sections 2
and 3, but are not really important at this point):

fn fact_aux(x: int , acc: int) → int {
if x = 0 then return acc
else let x = fact_aux(x - 1, acc * x) in return x

}
fn fact(x: int) → int {

let y = fact_aux(x, 1) in return y
}

In practical applications, such languages are rarely used without some form of module system.
At the very least, one would like to split larger programs into several files. A standard approach
to do this is to use the linker provided by standard operating systems. Individual files compile to
object files, which contain the information which functions are defined in them and which external
functions are being used in them. One can think of the interface X of an object file as consisting
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of two sets X− and X+ that contain the function names defined in the module and the external
functions used in the module respectively. The system linker uses this information to glue several
object files together. It can be seen as a weak first-order module system.

This paper may be read as a direct generalisation of this kind of linking to a proper higher-
order ML-style module system. The paper constructs such a module system for the kind of
first-order systems-level programming languages that we have just considered. The construction
is definitional in the sense that it works without extending the first-order language. We believe
that it should be particularly useful for low-level languages, like LLVM-IR, that offer few high-level
programming features to support modular programming.

In essence, we define a basic ML-style module system as syntactic sugar on top of the first-
order language. First, we have structures, which are records that collect function definitions from
the first-order language. A simple example structure appears on the left below. The type of a
structure is a signature that records the types of all (public) components. The type of the structure
is shown on the right below.

struct
fn fact_aux(x:int , a:int) → int {...}
fn fact(x: int) → int {...}
S = struct

fn f(x: A) → B {...}
end

end

sig
fact_aux: int × int → int
fact: int → int
S: sig f: A → B end

end

(1)

Next, functors are parameterised structures. In the simplest case, a functor allows one to write
a program that uses external functions, for example:

functor(X: sig f: int → int end) →
struct

fn f(x: int) → int { let y = X.f(x+1) in return y }
fn g(x: bool) → int { if x then X.f(0) else return 0 }

end

(2)

The type of a functor is a functor signature. In this particular case it is:

functor(X: sig f: int → int end) →
sig

f: int → int
g: bool → int

end

(3)

The kinds of structures and functors defined so far can be seen as simple syntactic sugar
for what one can already do with systems-level linking. The structure (1) would be sugar for a
first-order program of the form

fn fact_aux(x: int , acc: int) → int { ... }
fn fact(x: int) → int { ... }
fn S.f(x: A) → B { ... }

in which S.f is just a function name (the dot being a distinguished character). Sub-structures are
included by taking all the functions from the sub-structure and prefixing them with “S.”. The
above functor (2) can be seen as syntactic sugar for the first-order program

fn res.f(x: int) → int { let y = arg.f(x+1) in return y }
fn res.g(x: bool) → int { if x then arg.f(0) else return 0 }

where the bodies of the functions contain calls to the external function arg.f: int→ int belonging
to the functor argument. The functions belonging to the functor argument are prefixed with “arg.“
to avoid name-clashes with the functions for the functor result, which are prefixed with “res.”.

If one only allows first-order functors, i.e. functors that take structures (but not functors or
structures containing functors) as argument, this simple module system is just a way of formulating
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systems-level linking. Functor application works by renaming the argument to add the prefix
“arg.” to all function names, concatenating it with the body of the functor and then removing
the prefix “res.” from the functions for the result. Suppose, for example, that we want to apply
the functor (2) to a structure that represents the following first-order program:

fn f(x: int) → int { return (x+1) }

We would just rename f to arg.f, add the resulting function definition to the first-order definitions
from the functor, and remove “res.”-prefixes. The result is

fn f(x: int) → int { let y = arg.f(x+1) in return y }
fn g(y: bool) → int { if x then arg.f(0) else return 0 }
fn arg.f(x: int) → int { return (x+1) }

which amounts to systems-level program linking.
This approach works very well for first-order functors, but it is too simple to handle the higher-

order case, where functor arguments can be functors too. Consider, for example the following
functor definition, in which FS abbreviates the functor signature from (3).

functor (F: FS) →
struct

A1 = struct f = fn(x:int) → int { return x+1 } end
A2 = struct f = fn(x:int) → int { return x+2 } end
h = fn (x:int) → int {

let y1 = F(A1).g(x) in let y2 = F(A2).g(x) in
return y1+y2

}
end

(4)

If we try to see it as syntactic sugar like above, then it its unclear how to handle the two functor
applications F(A1) and F(A2):

fn res.A1.f(x: int) → int { return x+1 }
fn res.A2.f(x: int) → int { return x+2 }
fn res.h(x: int) → int {

let y1 = arg.res.g(x) /∗ ??? ∗/ in let y2 = arg.res.g(x) /∗ ??? ∗/ in
return y1+y2

}

In the first call to g, the function arg.arg.f should be bound to res.A1.f, while in the second it
should be bound to res.A2.f.

There are several ways of solving this problem. One can duplicate the actual argument for F
upon application [6], one can use closures to implement higher-order functors, and so on. But
suppose one wants to maintain the view of the module system as a formalisation of program
linking, where functor application is implemented by linking functor program and argument. The
goi provides interesting applications for such an approach, such as [8, 23]. It may be interesting
to consider in conjunction with recent work on link-time-optimisation [14].

If one wants to maintain the view of functor application as program linking, then one can use
indices to solve the problem with higher-order application. One may assume that to implement a
functor application, the linker adds a new first argument (of a suitable type index) to all functions
in the actual functor argument F. In the case of the problematic application above, this would
mean that the linker adds the following function definitions to the functor code:

fn arg.f(i:index , x:int) → int {let y = arg.arg.f(i, x+1) in return y}
fn arg.g(i:index , x:bool) → int {if x then arg.arg.f(i, 0) else return 0}

With such an assumption, the higher-order functor can be implemented as follows:
fn res.A1.f(x: int) → int { return x+1 }
fn res.A2.f(x: int) → int { return x+2 }
fn res.h(x: int) → int {

let y1 = arg.res.g(1, x) in let y2 = arg.res.g(2, x) in
return y1+y2

}
fn arg.arg.f(i: index , x: int) → int {

case i of 1 → res.A1.f(x) | 2 → res.A2.f(x)
}
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In the calls to arg.g, we pass an index that identifies which instantiation of the argument functor
is being used. When the argument functor calls a function from its own argument, which in this
case must be a call to arg.arg.f, then we dispatch on the index to call the function in the correct
actual functor argument.

This simple idea of having the linker add an index can be made to work in general for higher-
order modules. Functor application remains linking in the sense that the code coming from functor
and argument are just concatenated. The only difference is that linking may now involve adding
additional index arguments of suitable type. At higher-order, such arguments may need to be
added both to the argument and to the functor. In practice, one would want to add arguments
only when necessary, one would like to choose a precise as possible type for index (in this case
unit+ unit), and one would like to reduce case distinction as much as possible. This is much like
in defunctionalisation, which is related to the approach [21]. There is evidence that the approach
can be used for efficient compilation even when the higher-order structure is used extensively [23].

The module system introduced in this paper implements functors in this way. Of course, it
also allows type definitions and type abstractions. These will be described later.

1.2 Particle-Style Geometry of Interaction
A second way to read this paper is as a programming-language presentation of the constructions
of the particle-style Geometry of Interaction. The goi has its origins in logic and can be seen as
the construction of a model of Linear Logic. We give an outline of the most basic constructions,
in order to explain how the module system in this paper is a syntax for the goi. It will not be
important to understand in what way the constructions produce a model of Linear Logic.

The particle-style goi can be seen as modelling Linear Logic in terms of message-passing
graphs. We outline a formulation with directed graphs that have labelled nodes and edges. Think
of the nodes as stateless processes that pass messages along edges. Each edge has a label X
that defines two sets X− and X+. These sets specify what messages may be passed along the
edge: elements of type X+ may be passed with the direction of the edge, and elements of type
X− against the direction of the edge. The nodes are passive until they receive a message along
one of the edges connected to them. They then process the incoming message, construct a new
outgoing message, which they finally send along an edge of their choice. Nodes have extremely
simple behaviour, such as ‘upon receipt of v on one port, send out inl(v) on another port’. The
node label determines the behaviour of nodes.

To model Linear Logic, one builds message-passing graphs from a fixed set of standard nodes
that corresponds to the proof rules. For Intuitionistic Linear Logic (with ⊗ and () one can use
three kinds of nodes

ax ⊗ (
X X

X ⊗ Y

X Y X ( Y X

Y

which are defined for arbitrary X and Y . The edge labels are formulae. The labels X ⊗ Y and
X ( Y determine sets (X⊗Y )− = X−+Y −, (X⊗Y )+ = X+ +Y +, (X ( Y )− = X+ +Y − and
(X ( Y )+ = X− + Y +, where + stands for disjoint union. The same nodes are also available
with all edge directions reversed (this presentation has some redundancy). The message-passing
behaviour of these nodes is essentially already determined by the edge labels. In all cases, there
is just one canonical way of passing on a message of a particular type. For example, if node
( receives message inr(v) through the edge labelled with X ( Y , then v ∈ Y + and the only
reasonable action is to pass v along the edge labelled with Y . The above nodes treat all other
messages analogously in the canonical way. The graphs are assumed to be locally ordered, so that
the two edges going into ⊗ can be distinguished even if, for instance, X and Y are the same.

With this choice of nodes, one can interpret proofs of Intuitionistic Linear Logic. A proof of a
sequent X1, . . . , Xn ` Y in Linear Logic is translated to a graph g as shown on the left below.
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⊗

X ⊗ Y

X
Yax

X

ax

Y

g

X1 X2 Xn Y. . .

Proof rules are implemented in the canonical way using the above nodes. For example, a ⊗-
introduction rule for going from Γ ` X and ∆ ` Y to Γ,∆ ` X ⊗ Y is interpreted by taking the
union of the two graphs and adding a ⊗-node to connect the two edges labelled with X and Y to
one edge labelled X ⊗ Y . The canonical proof of Y, X ` X ⊗ Y would lead to the graph on the
right above.

One obtains a message-passing interpretation of Intuitionistic Linear Logic. The message-
passing behaviour of the graph obtained from a proof identifies the proof. The approach can also
be seen as a presentation of Abramsky-Jagadeesan-Malacaria game semantics [2].

It is not hard to extend this approach to cover also the exponential !X. To implement the
exponentials, one uses an edge label !X with (!X)− = N × X− and (!X)+ = N × X+. The
formula !X represents infinitely many copies of X and the new first component in (!X)− and
(!X)+ represents the number of the copy that the message is intended for. It is usually called
the index. To keep track of indices, messages are now extended with a stack. This means that
messages now have the form (s,m), where m is a message as before and s ∈ N∗ is a list of indices.
Where one could previously pass message m, one now passes message (s,m). The graph nodes
have essentially the same behaviour as before. They ignore the new stack component and just
pass it on unchanged. For example, if node ( receives a message of the form (s, inr(v)) on its
edge labelled with X ( Y , then it reacts by sending message (s, v) on its edge labelled with Y .

The stack in messages is only ever modified by a new box construction. This construction
allows one to construct a new graph node by putting a graph inside a box, as shown on the left
below.

g

X1 X2 Xn Y. . .

!X1 !X2 !Xn !Y. . .

Z

!Z
(s, (i,m))

(s i,m)
Message-passing:

Each incoming edge of the new node corresponds to an input edge into the boxed graph, and each
outgoing edge from the new node corresponds to an output edge of the boxed graph. The only
difference is that all labels change from X to !X when stepping outside of the box. In terms of
message passing, crossing the border of the box corresponds to pushing to and popping from the
message stack. This is shown on the right in the figure above. When (s, (i,m)) arrives outside the
box, (s i,m) is passed inside and then message passing is performed inside the box. When (s i,m)
arrives at the inside border of a box, the message (s, (i,m)) is passed to the outside.

To implement the structural rules for the exponentials, one uses corresponding new message
nodes that manipulate the index in messages. For example, contraction may be implemented using
a node with the following message-passing behaviour. It is based on one particular isomorphism
N ' N + N; any other choice would be fine as well.

c

!X !X

!X

(s, (2 · i,m))

(s, (i,m))

(s, (2 · i+ 1,m))

(s, (i,m))

This very coarse outline covers the bare essentials of the standard constructions that one finds
in many articles on the Geometry of Interaction, such as [13, 4, 5]. We have already mentioned at
the beginning of the Introduction that there are a number of programming language applications of
this structure. Many such applications are based on the observation that message-passing nodes
are very simple and can be implemented easily even in very restricted computational settings.
With the goi one can build a model of a higher-order programming language in such settings in
the form of message-passing graphs.
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1.3 From Interaction to Modules
How do the constructions from the goi relate to the module system outlined in Section 1.1?

To explain the correspondence, it is useful to outline how one can implement message-passing
graphs by first-order programs. We have explained that a graph edge with label X allows elements
of X− and X+ to be passed as messages. One way of implementing message-passing in a first-order
programming language is by means of function calls. To each edge e in the graph, we associate two
function labels, one for each end of the edge. The function send−e : X− → empty is invoked to pass
a message against the direction of the edge, and send+e : X+ → empty is invoked to pass a message
in the other direction. In both cases, the return type is empty, as message passing cedes control to
the recipient of the message. With this approach, a graph node is implemented simply by defining
the functions for the ends of the edges that are connected to it. For example, any ax -node would
be implemented simply by two functions fn send−e1(x) { send+e2(x) } and fn send+e2(x) { send−e1(x) },
where e1 is the left edge connected to the node and e2 is the other edge.

If one implements all the nodes in a graph in this way, then only the functions for the ends of

g

X

edges that have no recipient in the graph remain undefined. A graph g as shown on the
right becomes a program that defines a function send− : X− → empty (in addition to
internally used functions) and that may call an external function send+ : X+ → empty.

The definition of X ⊗ Y amounts to linking two programs together. Consider the case shown
on the right. The resulting program defines a function send− : X− + Y − → empty and may

g1

X

⊗

X ⊗ Y

Y

g2

call an external function send+ : X+ +Y + → empty. Notice that a function of type
X− + Y − → empty is in one-to-one correspondence with two functions of types
X− → empty and Y − → empty. In particular, send− corresponds to two such
functions, let us call them `1.send

− and `2.send
−. The external function send+

can be replaced by externals `1.send+ and `2.send+ in the same way. Then, the full
graph corresponds to the syntactic sugar for struct `1 = g1, `2 = g2 end outlined
in Section 1.1.

In Section 1.1, we have implemented functors simply by treating the definitions from the functor
arguments as external functions that will be linked later. In the message-passing graphs, this

g

X

(

X ( Y

Y

corresponds to treating functor arguments as incoming edges that will be connected
later, as for g in the figure on the right. Adding the node ( to this graph simply
amounts to packing up the two edges into one. In this case, send− corresponds
to res.send− : Y − → empty and arg.send+ : X+ → empty. The external send+

amounts to externals res.send+ : Y + → empty and arg.send− : X− → empty. No-
tice how this agrees with the informal implementation of functors in Section 1.1.

This gives a rough outline of how the goi corresponds to the implementation of modules
in Section 1.1. The indices used there to implement higher-order functors correspond to the
exponentials in the goi. One minor restriction is that the goi uses only non-returning functions
(with return type empty), but this is not hard to lift.

The simple module system from Section 1.1 may be considered a syntax for the constructions
of the goi. This view should make the goi more accessible to readers familiar with functional
programming but not the goi. More importantly, the view is more than just a notational refor-
mulation. Once one gets to more complicated features of module systems, such as type definition
and type abstraction, as defined in Section 4, using a module system provides a real benefit. This
is discussed in Section 7. In effect, when presented as in Section 1.2, the goi defines a module
system and its low-level implementation. It is clear that the latter becomes more complicated
once one gets to more sophisticated features of the module system. It also means that work on
the goi is usually formulated for ease of presentation rather than for efficient implementation.

1.4 Paper Outline
In Sections 2 and 3 we fix the syntax of a core programming language. It captures what we
assume about the core programming language that we want to equip with a module system. In
Section 4, we then define a module system over the core language. In Section 5, we show how

7



the constructions of the particle-style goi allow us to view the module system as a definitional
extension of the core language. To do so, we develop a linear form of F-ing [19]. In Section 6 we
show how to deal with linearity in type inference. Finally, in Section 7 we outline how viewing
the goi as a module system is useful in applications.

2 Core Expressions
We fix a very basic language of computational expressions as the basis for all further constructions.
Modules will organise these kinds of expressions. They also form the core expressions of first-order
systems-level programs.

Core types A ::= int | unit | A×A | empty | A+A

Core values v, w ::= x | n | () | (v, w) | inl(v) | inr(v)

Core expressions e ::= return v | let x = e in e | let x = op(v) in e

| let (x, y) = v in e | case v of inl(x)⇒ e; inr(x)⇒ e

In this grammar, n ranges over integers and op ranges over primitive operations, such as add , sub
and mul . It is possible to have effectful operations, such as print for I/O, or put and get for global
state, as required, but we do not need to assume any specific operations in this paper. The type
int is an example of a base type; let us assume that it represents fixed-width integers.

3 Systems-level Programs
There is hardly any programming language that consists of core expressions alone. In practice,
one needs a bit of infrastructure to organise them into programs. In this section we define a
simple programming language that uses first-order functions to organise core expressions. We call
it a systems-level programming language, because it roughly corresponds to a very small core of
systems-level programming languages like C or LLVM-IR.

The language may alternatively be seen as defining essentially the minimum of what one needs
to implement the particle-style interaction of the goi as outlined in Section 1.3. Suppose the
behaviour of each node in an interaction graph is given by a core expression. To implement the
message-passing process in the whole graph, one needs more than core expressions. For example,
message-passing in a graph may lead to a looping computation that may not be implemented by
core expressions alone. Systems-level programs extend core expressions just enough to implement
particle-style interaction. They can be seen as a simple syntactic formulation of the mathematical
assumptions in goi-situations [1].

Systems-level programs are simple first-order programs built from core expressions. For the
purposes of this paper, there is a lot of freedom in the definition of this language; here we define
a simple generic language that is easy to instantiate to concrete situations.

Systems-level types B ::= core type constructors | rawk where k ∈ {0, 1, 2, . . . ,∞}
Systems-level expressions e ::= core expression constructors | f(v)

| let x = coercB,rawk (v) in e | let coercB,rawk (x) = v in e

Systems-level programs P ::= empty | fn f(x1:B1, . . . , xn:Bn)→ B {e} P

The phrase ‘core type constructor’ means that we include all cases from the grammar for core
types, only now with B in place of A.

In contrast to the other calculi in this paper, the type system of systems-level programs is not
intended to capture interesting correctness properties. It is nevertheless useful for implementation
purposes, e.g. to statically know the size of values for efficient compilation.

A program consists of a list of function definitions of the form fn f(x1:B1, . . . , xn:Bn)→ B {e}.
This defines a function named f with arguments x1, . . . , xn of types B1, . . . , Bn, return type B
and body e. The grammar of core expressions has been extended with a new case f(v) for function
calls. Functions are allowed to be mutually recursive.
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The new types rawk are types of unstructured, raw data. The intention is that rawk is a type
that provides at least k bits of storage. Type raw∞ can store values of arbitrary size and can be
thought of like void* in C. We write just raw for raw∞.

We assume that there is a function size from types to {0, 1, 2, . . . ,∞} with the intention that
size(B) = k means that if one takes the raw underlying data of any value of type B, then it
can be represented using rawk. Of course, the function size can be defined only if one knows the
low-level encoding for all values. We do not want to fix a concrete encoding, as there are many
reasonable choices. We only make the assumption that the size function is such that values of any
type with size ≤ k can be cast without loss into values of type rawk, as described in the following
paragraph.

Values of type rawk can only be constructed by casting values of some other type into this
type. Using the new term let x = coercB,rawk(v) in e one can cast a value v of any type B
into its raw underlying data x of type rawk. The term let coercB,rawk(y) = w in e allows one to
interpret a raw value w as a value y of type B. This term should be read like a pattern matching
operation that matches w against coercB,rawk(y). The term binds the variable y in e. We assume
that let x = coercB,rawk(v) in let coercB,rawk(y) = x in e behaves in the same way as e[x 7→ v]
whenever size(B) ≤ k. This means that coercing a value into rawk and back gives us back the
original value, as long as size(B) ≤ k holds. There are no guarantees about any other casts, such
as let x = coercB1,rawk(v) in let coercB2,rawk(y) = x in e where B1 and B2 are different types.

Note that our assumptions on the types rawk can be achieved in many ways. For example, it
would be sound, if perhaps inefficient, to implement all types rawk as raw∞. In work on the goi,
one often uses a type of unbounded natural numbers to implement raw.

Notation “x as B”. To work with the coerc-terms, it is convenient to introduce some notation.
For example, if x : int× (unit + unit), then we can coerce x into a value of type x : int× raw by
coercing the second component of the pair. Writing down such terms is tedious, however. Instead,
define the binary relation C on types to be the congruence relation generated by B C rawk for
all B and k with size(B) ≤ k. Whenever B1 C B2, then we can cast a variable x of type B1 into
one of type B2. We write x as B2 for an expression computing this value. A value of type B2 can
be cast back into one of type B1. We also write x as B1 for such an expression. If B1 C B2 and
x:B1, then we know that (x as B2) as B1 returns just x.

Interfaces. As is usual in systems-level programming, we consider programs that are incomplete
in the sense that they contain calls to external functions. An interface (I; O) for a program
consists of two sets I and O of function signatures. The set I contains the functions signatures
f : (B1, . . . , Bn)→ B of all functions defined in the program. Any function that is called but not
defined in the program must appear with an appropriate type in O. The set O is allowed to
contain more definitions.

4 Module System
We define a module system for core expressions that elaborates into systems-level programs. Elab-
oration works by mapping modules to the structure of the goi, which is then implemented by
system programs. The module system is intentionally kept fairly standard in order to express the
goi in terms that are familiar to anyone familiar with ML.

The module system has the following types.

Paths p ::= X | p.`
Base types C ::= core type constructors | p

Module types Σ ::= MC | type | type=C | sig `i(Xi): Σi end | functor(X : Σ)→ Σ | C → Σ | B·Σ

In paths, X ranges over an infinite supply of module variables. These variables are distinct from
the value variables that may appear in core values. Base types are core types with an additional
base case for paths, as usual, so that one can write types like int×X.t.
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Most of the cases for module types are familiar from ML-like languages. In the module types,
as in the rest of this paper, we use the notation xi for a vector x1, . . . , xn. Signatures therefore have
the form sig `1(X1): Σ1, . . . , `n(Xn): Σn end. In such a signature, the `i are labels for referring
to the components from the outside using paths and the Xi are identifiers for referring to the
components from within the signature. In a programming language, one would typically write
only labels, i.e. write sig `1: Σ1, . . . , `n: Σn end. However, since labels may be used to access parts
of the signature from the outside, they cannot be α-renamed, which causes problems with name
capture in type-checking. For this reason, one introduces the additional identifiers, which can be
α-renamed without harm. Signatures are an example of translucent sums [11].

Type declarations come in two forms: type and type=C. The former declares some base type,
while the latter is a manifest type that is known to be the same as C. For example, one can write
sig t : type = int, f : Mt end, which means that t is the type int. We shall allow ourselves to
write type t and type t = int as syntactic sugar for t : type and t : type=int.

The type MC is a base case for computations. One should think of M(−) as the monad implicit
in core expressions and of MC as a computation that returns a value of type C. We make the
monad explicit to make clear where computational effects may happen. Note that the module
system does not allow value declarations. This simplifies the development, as we would otherwise
need to fix an evaluation order for modules to make sure that evaluation of values happens in the
right order. Without value declarations, this is not necessary. All possible effects are accounted
for by MC.

The module system nevertheless allows parameterisation over values by means of the type
C → Σ, which can only be applied to (already computed) values. The typical use of this type is
in first-order function types C1 → MC2.

Finally, the type B·Σ corresponds to a slight generalisation of the exponentials from Linear
Logic. The exponential !Σ appears as the special case raw·Σ. The annotation states that the
module has an index variable of type B, as outlined in Section 1.1. The programmer may consider
B·Σ as having the same meaning as Σ; the annotation B will be computed automatically by type
inference. It is nevertheless important to make it explicit in the types, since it needs to be known
for linking.

Module terms are defined by the following grammar.

Module terms M ::= p | type C | struct `i(Xi) = Mi end | core expression constructors
| functor(X : Σ)→M | M X | fn (x:C)→M | M(v) | M :>Σ

They can contain both value and module variables. Value variables x, y, z can appear in core
values. They are bound by core expressions and by the new construct fn (x:C)→ M that allows
abstraction over values. The corresponding application is M(v). Module variables X, Y , Z may
appear in paths. They are bound in structure and functor definitions.

Most module terms should be familiar from other module systems, particularly type declara-
tions, signatures, functors and type sealing. For example, if M has type sig type t = int, f: Mt

end, then sealing M :>Σ allows one to abstract the signature to Σ =sig type t, f: Mt end.
What is perhaps less standard is that module terms are closed under the term formers for

core expressions. Core expressions may not only be used for terms of type MC. One can use
let (x, y) = v in M and case v of inl(x) ⇒ M1; inr(y) ⇒ M2 for M , M1 and M2 of arbitrary
module type. The case distinction is implemented by dynamic dispatch on v. Its typing rule
requires M1 and M2 to have the same type. This is a simplification that makes type-checking
easier. In the case where the types of M1 and M2 match, but are not equal, one must use sealing
explicitly to make their types equal.

4.1 Examples
We give a few very simple examples to illustrate the features of the module system. The following
signature Stream may be used as an interface for infinite streams of ints. The structure Nats
implements the stream 0, 1, 2, . . . . We allow ourselves some syntactic sugar, e.g. for arithmetic
expressions.
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Stream := sig
t: type ,
init: Mt,
next: t → M(int * t)

end

Nats := struct
t = type int ,
init = return 0,
next = fn(x: t) →

return (x, x+1)
end :> Stream

Without sealing, one could also give Nats the type with t : type=int instead of t : type.
An example of a functor is a module that multiplies a given stream with 1,−1, 1,−1, . . .

A := functor(X: Stream) →
struct

t = type (int * X.t),
init = let x = X.init in return (1, x),
next = fn (c: t) → let (s, x) = c in

let (i, x’) = X.next(x) in
let c’ = (s * (-1), x’) in
return (s * i, c’)

end :> Stream

The following example shows that modules are not completely independent from core compu-
tation. It is possible to define a module by case-distinction, for example.
G := fn(b: unit+unit) → case b of inl() → A(Nats) | inr() → Nats

It has type (unit + unit)→ Stream. Computationally, a call to G(v).next(x) will first perform a
case distinction on v and then dispatch to either of the two implementations of next from the two
branches.

To give an example for the use of exponentials, consider again the higher-order functor from (4).
It can be written as functor(F: (unit + unit)·FS) → struct /∗ as before ∗/ end. Its type is:

functor(F: (unit + unit)·FS) →
sig

A1: sig f: int → int end ,
A2: sig f: int → int end ,
h: int → int

end

The exponential (unit + unit)·FS is essential because it tells the linker to insert an index argument
of type unit+unit before application. The functor cannot be typed without it, as the parameter F
is used twice in its body. We can see from the type that the functor A for alternating streams above
does not require an index argument and can be applied using standard linking. This difference is
the reason why it is essential to record exponentials explicitly in the types of modules.

5 Typing and Elaboration
We now define the module type system and the elaboration to systems-level programs. To manage
all the details of type definitions, it is convenient to define elaboration using the F-ing modules
approach of Rossberg, Russo and Dreyer [19]. This means that elaboration becomes a two-step pro-
cess: an elaboration from modules into a linear variant of System F, followed by a goi-translation
into systems-level programs. The first step removes type declarations and replaces them by ap-
propriately quantified type variables. The second step uses the constructions of the goi for the
systems-level implementation of modules.

5.1 Flexible Types for Interaction
We begin describing the linear variant of System F that captures the constructions of the goi
in a way that is suitable for elaboration into systems-level programs. It is a development of the
calculus int from [23].

The main new feature of the calculus in this section is the new form of contexts that allows
a flexible management of the scope of value variables and of exponentials. This is important for

11



the translation of a module calculus that allows a combination of paths and exponentials that is
hard to treat efficiently using the standard rules from Linear Logic. The new formulation allows
type inference to be simple and type-directed, even where exponentials are involved. One does not
need to guess when to apply the rules for exponentials, but can simply deal with them eagerly. At
the same time, it produces an efficient systems-level implementation of modules.

A technical contribution of this section is to develop an elaboration of the calculus that imple-
ments the informal idea of Section 1.1 with a systems-level language that has returning functions
as target. In loc. cit. only non-returning functions were considered.

The calculus has the following types and terms.

Base types D ::= systems-level type constructors | α

Interaction types S, T ::= MD | {`i:Si} | S ( T | D → S | ∀α. S | ∃α. S | D·S

Interaction terms s, t ::= core expression constructors | X | {`i = ti} | let {`i = Xi} = s in t

| λX:S.t | s t | fn (x:D)→ t | t(v) | Λα. t | t D
| pack(D, t) | let pack(α,X) = s in t

The grammar for core types is now extended with type variables, which can be bound by
universal and existential quantifiers. Interaction types S and T correspond to the structure of the
goi. Instead of S ⊗ T , we use a labelled record type {`1:S, `2:T}. This is convenient for the
elaboration of structures later. As before, we write !S for raw·S. We thus have S⊗T , S ( T and
!S, as in the informal outline of the goi in the Introduction. The types MD and D → S have the
same role as in the module system above. The terms should be unsurprising to anyone familiar
with System F.

In the rest of this section, we define the type system for this calculus and its elaboration into
systems-level programs. We begin by explaining contexts and structural rules.

5.1.1 Contexts and Structural Rules

The type system uses a new kind of contexts and structural rules that allow for a simple and
flexible management of exponentials. A context Γ is a finite list of variable declarations, of which
there are three kinds: module declarations X:S, value declarations x:D and type declarations α,
as defined in Fig. 1 (ignore the parts after for now). We identify contexts up to the equivalence
induced by Γ, X:S, Y :T, ∆ = Γ, Y :T, X:S, ∆. This means that any two module declarations
may be reordered. The order of value declarations is important, however. They may not be
reordered, neither with module variable declarations nor with other value variable declarations.
The order of type declarations is not important, but we do not need to reorder them and it is
easiest to treat them like value variables. Value variable declarations thus partition contexts into
zones.

The meaning of contexts is perhaps best explained using graphical notation like in Section 1.2.
In standard type systems for Linear Logic, the promotion rule takes Γ ` t : S to !Γ ` t : !S (perhaps
with digging in the context). In graphical notation, it amounts to putting the whole graph for
t into a box, as shown below. Traditionally, the variables in the context Γ all live at the same
nesting depth of boxes.

t

S1 S2 Sn T

t

!S1 !S2 !Sn !T

=⇒

. . .

. . .

Our notion of contexts enables a flexible construction of such exponential boxes. Boxes can
be constructed incrementally rather than all at once with promotion. Any value declaration in a
context can be understood as the left border of an exponential box. All the following declarations
are inside this box. The right border of the box appears at the end of the sequent. For example,
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a derivation of X:S, x: raw, Y :T, y: raw, Z:U ` t : V represents the following situation (note that
the boxes are not closed at the bottom).

t

S T VU

One should think of each box as representing the scope of a value variable. Each box has an
associated value that is available everywhere within the box and that never changes inside the
box (it corresponds to the indices of the goi). This value can be accessed with the value variable
declared in the context. The variable x is available in the lightly shaded box, which contains the
darker box. Variable y is available only in the dark box. All boxes are properly nested, as is
standard in graphical representations of Linear Logic [10]. They are just not closed (yet) at the
bottom.

The structural rules allow one to construct the boxes in a more gradual manner than the
traditional promotion rule. The two rules for this purpose are close-l and close-r in Fig. 4.
These rules are written with a double line, which means that they can be used both from bottom
to top and from top to bottom. Used from top to bottom, they have the effect of (partially) closing
a box. Rule close-l moves the border of the box past one of the variables, see the image on the
left below. Since its edge now enters a box, its type must be decorated with an exponential. Rule
close-r is applicable only in a context that ends with a value variable. The image on the right
below depicts its effect on the premise X:S, x: raw, Y :T, y: raw ` t : V .

S T V!U

S T VU

S T !V

S T V

close-rclose-l

Using these two rules upside-down allows one to open boxes.

S T VU

S T V!U

S T V

S T !V
close-l

(upside down)

close-r

(upside down)

It is not hard to see that the standard promotion rule can be implemented with these new box-
handling rules. The main advantage of the new rules is that they allow for a fully type-directed
type inference method. One does not have to guess when to apply the promotion rule, but can
just apply rule close-r eagerly whenever one encounters an exponential type.

The price to pay for the more flexible box-management rules is that context concatenation
becomes a little more difficult. In multiplicative rules, we cannot just concatenate contexts, but
we must combine them zone by zone, so that the level of all variables remains the same in the
combined context. We define a partial operation of joining two contexts Γ and ∆ into a single
context Γ + ∆ as follows:

(X:S, Γ1) + Γ2 := X:S, (Γ1 + Γ2) Γ1 + (X:S,Γ2) := X:S, (Γ1 + Γ2)

(x:A, Γ1) + (x:A, Γ2) := x:A, (Γ1 + Γ2) (α, Γ1) + (α, Γ2) := α, (Γ1 + Γ2)

The use of the context operation + in the typing rules has the effect of treating module variables
linearly (or multiplicatively) and all other variables non-linearly (or additively). Note that this
operation is well-defined only by the identification up to reordering of module variable declarations.
For example, (X: Mint, x: int)+(Y : Mbool, x: int) may be either (X: Mint, Y : Mbool, x: int) or
(Y : Mbool, X: Mint, x: int), but we consider these contexts as being the same. The operation +
is partial, since both contexts must contain the same value and type declarations in the same
order.
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empty  (); ∅; ∅
Γ Bi; I; O Γ ` S  J ; P X not declared in Γ

Γ, X:S  Bi; I ∪ J [X]; O ∪ P [X]

Γ Bi; I; O Γ ` D  B x not declared in Γ

Γ, x:D  Bi, B; I; O

Γ Bi; I; O α not declared in Γ

Γ, α Bi; I; O

Figure 1: Contexts: Well-Formedness and Elaboration

Γ, α, ∆ ` α raw

B ∈ {empty, unit, int, rawk}
Γ ` B  B

Γ ` D1  B1 Γ ` D2  B2 op ∈ {+,×}
Γ ` D1 opD2  B1 opB2

Figure 2: Base Types: Well-Formedness and Elaboration

5.1.2 Type System

As is standard in work on module systems, we formulate the type system so that the typing rules
already contain the elaboration of types and terms to systems-level interfaces and programs in the
part after the “ ”.

Γ Bi; I; O Γ ` D  B Γ ` S  I; O Γ ` t : S  m

The first three judgements express well-formedness of contexts, base-types and interaction types,
and the last one states that t has type S. Before coming to the elaboration, we briefly discuss
the typing rules themselves. Figs. 1–3 are well-formedness rules for contexts and types. The
structural rules in Fig. 4 are standard except for close-l, close-r and duplication, the former
two we have already explained above. The latter allows unrestricted contraction on variables of
certain type. These are the types that are implemented by systems-level programs that may not
call any external function. With this rule, any first-order module can be typed without using any
exponentials. The typing rules for terms appear in Figs. 5 and 6. With the new form of contexts,
these should be unsurprising. We state them mainly for their elaboration part, so that the reader
can follow the translation from modules to systems-level programs.

Elaboration We now discuss the elaboration of the calculus into systems-level programs, i.e. the
parts of the form  . . . in the typing judgements.

The rules for the base type elaboration judgement Γ ` D  B obtain B from D essentially by
replacing any occurrence of a type variable α with raw. Polymorphism is implemented by casting
actual values to their raw underlying data.

The judgement Γ ` S  I; O is defined in Fig. 3. It produces two sets I and O of function
declarations, which are the systems-level interface of module of type S. The elaboration of types
corresponds to the definitions of (X⊗Y )−, (X⊗Y )+, (X ( Y )− and (X ( Y )+ from Section 1.2
as outlined in Section 1.3. The interface (I; O) depends only on the value variables in Γ.

Γ Bi; . . . ; . . . Γ ` D  B

Γ ` MD  {�.main : Bi → B}; ∅
Γ ` Sk  Ik; Ok for k = 1, . . . , n `i pairwise distinct

Γ ` {`i:Si} 
⋃n

i=1 Ii[�.`i];
⋃n

i=1Oi[�.`i]

Γ ` S  I; O Γ ` T  J ; P

Γ ` S ( T  O[�.arg] ∪ J [�.res]; I[�.arg] ∪ P [�.res]

Γ, x:D ` S  I; . . . Γ ` S  . . . ; O

Γ ` D → S  I; O

Γ, x:D ` S  I; O

Γ ` D·S  I; O

Γ, α ` S  I; O

Γ ` ∀α. S  I; O

Γ, α ` S  I; O

Γ ` ∃α. S  I; O

Figure 3: Interaction Types: Well-Formedness and Elaboration
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close-l
Γ, x:D, X:S, ∆ ` t : T  m

Γ, X:D·S, x:D, ∆ ` t : T  m
============================== close-r

Γ, x:D ` t : S  m

Γ ` t : D·S  m
================== x /∈ FV (t)

weak
Γ, ∆ ` t : T  m Γ ` S  I; O

Γ, X:S, ∆ ` t : T  m, fn O(x) {O(x) }

dereliction
Γ, X:S, ∆ ` t : T  m Γ ` S  I; O

Γ, X:D·S, ∆ ` t : T  m[X 7→ X ′], derI,O(X,X ′)
D non-empty, X ′ fresh

duplication
Γ, X:D·S, ∆ ` t : T  m Γ ` S  I; ∅

Γ, X:S, ∆ ` t : T  m[X 7→ X ′], fn I[X ′](γ, i, x) { I[X](γ, x) }
X ′ fresh

contraction
Γ, X1:D1·S, X2:D2·S, ∆ ` t : T  m Γ ` S  I; O

Γ, X: (D1 +D2)·S, ∆ ` t[X1 7→ X,X2 7→ X] : T  m, contrI,O(X,X1, X2)
X /∈ {X1, X2}

digging
Γ, X:D1·(D2·S), ∆ ` t : T  m Γ ` S  I; O

Γ, X: (D1 ×D2)·S, ∆ ` t : T  m[X 7→ X ′], digI,O(X,X ′)
X ′ fresh

subtyping
Γ, X:D1·S, ∆ ` t : T  m Γ ` D2·S  I; O Γ ` D1·S  J ; P

Γ, X:D2·S, ∆ ` t : T  m[X 7→ X ′], coercI,O,J,P (X,X ′)
D1 C D2, X ′ fresh

Figure 4: Structural Typing Rules

var
Γ ` S  I; O Γ . . . ; . . . ; O′

Γ, X:S ` X : S  forwardI,O(X,�), fn O′(x) {O′(x) }

(-i
Γ, X:S ` t : T  m

Γ ` λX:S.t : S ( T  m[� 7→ �.res, X 7→ �.arg]

(-e
Γ ` s : S ( T  m ∆ ` t : S  n Γ ` T  I; O

Γ + ∆ ` s t : T  n[� 7→ �.arg], m, forwardI,O(�.res,�)

⊗-i
Γi ` ti : Si  mi `i pairwise distinct

Γ1 + · · ·+ Γn ` {`i = ti} : {`i:Si} mi[�.`i]

⊗-e
Γ ` s : {`i:Si} m ∆, Xi:Si ` t : T  m′

Γ + ∆ ` let {`i = Xi} = s in t : T  m[�.`i 7→ Xi], m
′

fn-i
Γ, x:D ` t : S  m Γ, x:D ` S  I; O

Γ ` fn (x:D)→ t : D → S  m[X], fn I(x) { I[X](x) }, fn O[X](γ, x, x) {O(γ, x) }
X fresh

fn-e
Γ ` t : D → S  m Γ ` v : D Γ ` S  I; O

Γ ` t(v) : S  m[X], fn I(γ, x) { I[X](γ, v, x) }, fn O[X](x) {O(x) }
X fresh

all-i
Γ ` t : S  m Γ ` S  I; O

Γ ` Λα. t : ∀α. S  m
α not in Γ

all-e
Γ ` t : ∀α. S  m Γ ` S[α 7→ D] I; O Γ, α ` S  J ; P

Γ ` t D : S[α 7→ D] m[X], coercI,O,J,P (X,�)
X fresh

exists-i
Γ ` t : S[X 7→ D] m Γ ` S[α 7→ D] I; O Γ, α ` S  J ; P

Γ ` pack(D, t) : ∃α. S  m[X], coercI,O,J,P (X,�)
X fresh

exists-e
Γ ` s : ∃α. S  m Γ, α, X:S ` t : T  n

Γ, α ` let pack(α,X) = s in t : T  m[X], n
X fresh

Figure 5: Typing Rules for Interaction Terms
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return
Γ . . . ; . . . ; O Γ ` v : D

Γ ` return v : MD  fn �.main(γ) { return v }, fn O(x) {O(x) }

seq
Γ ` e1 : MB  m ∆, x:B ` e2 : MC  n

Γ + ∆ ` let x = e1 in e2 : MC  m[X1], n[X2], fn �.main(γ) { let x = X1.main(γ) in X2.main(γ, x) }
X1, X2 fresh

pair-e
Γ ` v : A×B Γ ` S  I; O Γ, x:A, y:B ` t : S  m

Γ ` let (x, y) = v in t : S  m[X], fn I(γ, x) { let (x, y) = v in I[X](γ, x, y, x) },

fn O[X](γ, x, y, x) {O(γ, x) }

X fresh

sum-e
v ` A1 +A2 : Γ ` S  I; O Γ, xi:Ai ` ti : S  mi for i ∈ {1, 2}

Γ ` case v of inl(x1)⇒ t1; inr(x2)⇒ t2 : S
 m1[X1], m2[X2], fn O[X1](γ, x, x) {O(γ, x) }, fn O[X2](γ, x, x) {O(γ, x) },

fn I(γ, x) { case v of inl(x1)⇒ I[X1](γ, x1, x); inr(x2)⇒ I[X2](γ, x2, x) },

X1, X2 fresh

Figure 6: Typing Rules for Expression Terms

The function labels in I and O are words generated by the grammar L ::= � | X | L.`,
in which X ranges over module variables and where � represents a hole. The labels therefore are
essentially paths considered as function labels. This is convenient to avoid arbitrary encodings
into strings. To define the elaboration of modules, we often need to substitute labels for �. We
write short (−)[L] for the substitution operation (−)[� 7→ L].

The judgement Γ ` S  I; O defines a systems-level interface in which all function labels have
the prefix “�.”. This prefix is intended to be substituted with a base name. For instance, for a
variable X:S in a context we will use the interface I[X]; O[X].

We comment on the case for the type MD, because it shows the systems-level treatment of
value variables. The premise Γ Bi; . . . ; . . . in its rule states that the list of the types of value
declarations in Γ elaborates to Bi. Thus, MD elaborates to a single function declaration that
takes the values of the value variables and returns a value of the type that D elaborates to. This
means that on the systems-level, we make value variables available by passing them explicitly as
additional arguments. This corresponds to the stack in the goi. The management of values is
implemented by the structural rules: When one enters a box, one must provide a new value for
this variable as an argument to the called function. Inside the box, the variable is passed on
unchanged. Upon leaving a box, its value is discarded.

The elaboration of D·S is also based on this way of managing value variables. The systems-
level interface of D·S differs from that of S in that all function declarations have an additional
argument of the type that D elaborates to. This is useful because we enforce the following
callee-save-invariant : A systems-level program implementing the interface D·S must treat the
additional variable like a variable from the context, i.e. it may not modify its value and must pass
it on unchanged. We shall additionally enforce that the behaviour of the program may not even
depend on the value of the additional variable. With these invariants, we can use the added value
of type D like an index in Section 1.1.

The module elaboration judgement Γ `M : S  m translates the module termM to a systems-
level programm. The programm defines all the functions in I and it may call the functions from O,
where I and O are defined by Γ ` S  I; O. But, of course, m may also make use of the modules
that are declared in Γ. So, if Γ is ∆, X:T, ∆′ and ∆ ` T  J ; P , then m may assume that the
module X is available as a systems-level program with interface (J [X]; P [X]). This means that m
may also invoke the functions from J [X]. In return, it must define all functions from P [X].

In the elaboration part of rules for terms, we use some notation. Given any set I of definitions,
we write short fn I[X](x) { I[Y ](x) } for the set

{
fn f [X](x) { f [Y ](x) } | f ∈ I

}
. The length

of the vector x is determined in each case by the type of f . In the rules, we use comma for set
union. If Γ is a context, then we write γ for the list of value variables declared in it (in this order).
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We use the following abbreviations for sets of function definitions, which depend (through the use
of γ) on the context Γ of the rule in which they are used.

• forwardI,O(X,Y ) abbreviates fn I[Y ](γ, x){ I[X](γ, x) }, fn O[X](γ, x){ O[Y ](γ, x) }.

• digI,O(X,Y ) abbreviates

fn I[X](γ, x, y){ let (x1, x2)=x in I[X](γ, x1, x2, y)},
fn O[Y ](γ, x1, x2, y){ O[X](γ, (x1, x2), y)}.

• derI,O(X,Y ) abbreviates fn I[X](γ, y){ I[Y ](γ, v, y) }, fn O[Y ](γ, x, y) { O[X](γ, y) }.

• contrI,O(X,X1, X2) abbreviates

fn I[X1](γ, x1, y){ I[X](γ, inl(x1), y) }, fn I[X2](γ, x2, y){ I[X](γ, inr(x2), y) },
fn O[X](γ, x, y){case x of inl(x1) → O[X1](γ, x1, y)

; inr(x2) → O[X2](γ, x2, y) }.

• coercI,O,J,P (X,Y ) abbreviates the set of all functions defined as follows: For each f such
that f : A→ C ∈ I and f : B → C ∈ J , there is the function

fn f [Y ](xi:Ai){ let y1=x1 as B1 in . . . let yn=xn as Bn in f [X](yi) }.

For each g such that g : A→ C ∈ P and g : B → C ∈ O, there is the function

fn g[X](xi:Ai){ let y1=x1 as B1 in . . . let yn=xn as Bn in g[Y ](yi) }.

With these definitions, the structural rules should not be hard to understand. Perhaps rule
weak deserves comment: It defines the functions from O trivially. Since no function from I is ever
invoked, neither will be any function from O. But an implementation of the unused module X
could contain a call to some external function in O, and we must define them, so that the program
does not contain calls to undefined functions. Rules var and return have similar definitions.

The rules for terms are such that the rules for records and(-functions implement the informal
implementation of signatures and functors outlined in the Introduction. Records just collect all
the definitions with appropriate name-prefixes. Functors implement system-level program linking.
The implementation of functors appears to be similar to that in MixML [18].

The rules for fn-functions bring an additional value variable into scope. On the level of systems-
level program, this just amounts to adding a new formal parameter to all functions. The rules for
fn refer to an obvious typing judgement for values Γ ` v : D, which is omitted.

In elaboration, the quantifiers become just coercions and have no essential effect at all. The
type raw takes the place of the values of the concrete type. In particular, the packing and unpacking
of existential types that will be frequent in the next section amounts to nothing but casts.

5.1.3 Correctness

We end this section by explaining in which sense elaboration provides a correct implementation
of the interaction calculus. It is not completely obvious how to state correctness, as we have not
given an operational semantics of the interaction calculus. Here we define set-theoretic semantics
for the interaction calculus that interprets types as sets and both ( and → simply as functions.
This semantics ignores exponentials, which can be seen as an implementation detail that does not
affect the meaning of programs. We then show that elaborated programs correctly implement this
interpretation.

To define the set-theoretic interpretation, we assume a monad M on Sets that is sufficient to
interpret the systems-level language. In the simplest case, this will be just the non-termination
monad MX = X + {⊥}, which accounts for possible non-termination.

We assume a standard set-theoretic semantics for the systems-level language. The interpreta-
tion JBK of a systems-level type B is defined to be the set of closed values of type B. A systems-level
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function f : (B1, . . . , Bn)→ B is interpreted as a function JB1K× · · · × JBnK→MJBK. A systems-
level program m is interpreted as JmKσ, where σ is an environment that maps function signatures
like f : (B1, . . . , Bn) → B to corresponding functions JB1K × · · · × JBnK → MJBK. The semantics
of the program JmKσ is then a mapping from function signatures (the ones defined in m) to cor-
responding functions (of the same format as in σ). We do not spell out this interpretation. It is
essentially a standard semantics of an imperative language, see e.g. [24].

We use the following notion of systems-level program equality. We write m =I,O m′ if, for any
environment σ that defines all functions in O, the interpretations JmKσ and Jm′Kσ agree on all
functions from I.

With these definitions, we can define a set-theoretic semantics for the interaction calculus. For
any closed interaction type S, we define the set JSK as follows:

JMDK = MJDK JB · SK = JSK

J{`i:Si}K = {f | dom(f) = {`i}, f(`i) ∈ JSiK} J∀α. SK =
∏

B systems-level typeJS[α 7→ B]K

JS ( T K = JSK→ JT K J∃α. SK =
∑

B systems-level typeJS[α 7→ B]K

JD → SK = JDK→ JSK

We omit the interpretations of terms.
Elaboration correctly implements this set-theoretic semantics. To make this statement precise,

we define a relation m ∼S f , which expresses that the systems-level program m implements the
semantic value f ∈ JSK. The relation is defined such that it can hold only if m is a systems-level
program of the interface (I; O) determined by ` S  I; O. The definition is given by induction
on S in the following cases. To simplify the notation, we write mR for the systems-level program
in the conclusion of rule R. For example, m⊗-i is mi[�.`i].

• m ∼MD f iff: JmK(�.main)() = f .

• m ∼{`i:Si} f iff: there existmi and fi such thatm =I,O m⊗i and f(`i) = fi andmi ∼Si
f(`i).

• m ∼S(T f iff: whenever n ∼S g, then m(-e ∼T f(g).

• m ∼D→S f iff: for all d ∈ JDK, we have mfn-e ∼T f(d) for some/any fresh X.

• m ∼B·S f iff: there exists n with with n ∼S f and m =I,O B · n, where B · n denotes the
program obtained from n by adding a new first formal parameter of type B to all functions,
which is passed as first argument in all function calls.

• m ∼∀α. S f iff: we have mall-e ∼S[α7→B] f(B) for all B, where J and P in mall-e are
determined by ` S[α 7→ B] J ; P .

• m ∼∃α. S f iff: there existB,n, g, such that f is (B, g) andm =I,O mexists-i and n ∼S[α7→B] g.

With these definitions, we can state the correctness result:

Proposition 1. If ` t : S  m, then m ∼S JtK.

The proof is a straightforward, if lengthy, induction on typing derivations. To deal with typing
sequents with non-empty contexts, it uses a logical extension of ∼ to terms in context, which
amounts to abstracting the whole context and using closed ∼.

5.2 Elaboration of the Module System
We now translate the module system into the interaction calculus. Records and(-functions can
already directly represent structures and functors. It remains to account for type declarations,
their abstraction and the use of paths to access them.

F-ing [19] translates an ML-style module system into System Fω. Here we adapt it to translate
our module system into the interaction calculus. Module types translate to interaction types and
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module terms translate to interaction terms. In essence, structures translate to records, functors
translate to(-functions, and any type declaration type or type=D in a module type is replaced
by the unit type {} (the empty record). As unit types elaborate to an empty systems-level
interface, this means that type declarations are compiled out completely and are only relevant for
type checking. The declared types become type variables and are thus implemented using raw.

While one wants to remove type declarations in the elaboration process, type information is
needed for type checking, of course. In order to be able to express elaboration and type-checking
in one step, it is useful to use labelled unit types that still record the erased type information.
We define the type [=D] as a copy of the unit type {}, labelled with D. This type could be
made a primitive type, but it can also be defined as the type [=D] := D → {} with inhabitant
?D := fn (x:D) → {}. Note that [=D] still elaborates to an empty systems-level interface. The
labelling can now be used to track correct usage of types: type=D becomes [=D] and type
becomes [=α] for a new, existentially quantified, type variable α. For example, the signature sig s

: type, t : type, f : Mt, g : Ms end becomes ∃α, β. {s: [=α], t: [=β], f: Mβ, g: Mα}. The elaborated
type still contains the information that f returns a value of type t, which would have been lost
had we used {} instead of [=α]. Elaborated types thus contain all information that is needed for
type-checking.

In the rest of this section, we define an F-ing translation of our module system to the linear
type system for the Geometry of Interaction. The definitions follow [19]; the main difference is
the treatment of linearity in module and interaction types. The translation uses five kinds of
judgements for base types, module types, module terms, module subtyping and matching:

Γ ` C  D Γ ` Σ Ξ Γ `M : Ξ t Γ ` Ξ ≤ Ξ′ t Γ ` S ≤ Ξ′ D, t

In these judgements, S and Ξ are interaction types defined by the following grammar.

S ::= [=D] | MD | {`i:S} | ∀α. S ( Ξ | D → Ξ | D·S
Ξ ::= ∃α. S

The context Γ in the judgements is a context as in the previous section. However, all module
variable declarations in it must have the form X:S, where S is generated by the above grammar.

The judgement Γ ` Σ Ξ formalises module type elaboration. For example, if Σ is the
signature sig t : type, f : Mt end, then Ξ will be ∃α. {t: [=α], f: Mα}.

The judgement Γ `M : Ξ t expresses that M is a module term whose type elaborates to Ξ
and that the module itself elaborates to the interaction term t with Γ ` t : Ξ.

The judgement Γ ` Ξ ≤ Ξ′ t is for subtyping. In it, t is a coercion term from Ξ to Ξ′ that
satisfies Γ, X: Ξ ` t X : Ξ′.

Finally, Γ ` S ≤ Ξ D, t is a matching judgement. By definition, Ξ has the form ∃α. S′. The
matching judgement produces a list of types D and a term t, such that Γ ` S ≤ S′[α 7→ D] t.

In all judgements, the context records the already elaborated type of variables. Labelled unit
types record enough information to perform type checking with elaborated types only.

Module type elaboration in Fig. 8 implements the idea of translating structures to records,
functors to(-functions and to replace type declarations by labelled unit types. The variable case
in the translation of base types in Fig. 7 gives a first example of where one uses the label of a unit
type. Functors are modelled generatively. If the argument elaborates to ∃α. S and the result to
∃β. T , then the functor elaborates to ∀α. S ( ∃β. T . This means that the type β may be different
for each application of the functor. To cover existing applications, such as [23], generative functors
were a natural choice (indeed, types of the form ∀α. S ( ∃β. T already appear in loc. cit.); in the
future, applicative functors may also be useful.

The elaboration rules for terms are shown in Figs. 9 and 10. In addition to these rules, we also
assume that the structural rules from Fig. 4 are available in the rules for module elaboration.

The module system is linear in the sense that a module may be used more than once only
if it appears under a suitable exponential. We make exponentials explicit in the types, because
they add a little overhead in the systems-level implementation of modules, and it is desirable to
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Γ, X: [=D], ∆ ` X  D

B ∈ {empty, unit, int}
Γ ` B  B

Γ ` C1  D1 Γ ` C2  D2 op ∈ {+,×}
Γ ` C1 opC2  D1 opD2

Γ, Yi:Si, ∆ ` C  D

Γ, X: {`i:Si}, ∆ ` C[Yi 7→ X.`i] D

Figure 7: Base Type Elaboration

have control over them. Already in the Introduction we have seen that non-linear use of module
variables has an effect on the elaboration of modules. In the higher-order example in Section 1.1,
the variable F was used twice, once in F(A1) and once in F(A2), and this duplication led to the
need to insert an index parameter in the elaboration. This additional parameter introduces a little
overhead in the systems-level program. Had we used F only once, then we could have done without
it. In the type system, this difference appears in the presence or absence of an exponential on the
type.

Defining what it means for a module to be used more than once is a little subtle. Suppose we
have a variable X of the (already elaborated) type {`1:S, `2:T}. A module that uses both X.`1
and X.`2 should be considered as using X linearly, even though the variable X appears twice.
As each component of the module is used only once, elaboration works without the need for an
exponential. A module like struct A = X.`, B = X end that uses both X.`1 and X cannot be
considered as using X linearly, however. An exponential is needed.

To capture a suitable notion of linearity, the elaboration procedure manages paths differently
from other approaches [19, 15]. In rule var, the base case of term elaboration is defined only for
variables, not for arbitrary paths. However, rule sig-e allows one to reduce paths in a term. For
example, to derive X: {f :S, g:T} ` X.f : S  . . ., one can first use sig-e to reduce the goal to
f :S, g:T ` f : S  . . .. The advantage of this approach using sig-e over standard treatments of
paths is that it allows us to control linear use of modules, even in cases where a module variable
syntactically appears twice in a term. For example, if X: {f :S, g:T} then one can give a type
to a module of the form struct A = X.`1, B = X.`2 end, but not (in general) one of the form
struct A = X.`, B = X end. The fact that sig-e removes variable X from the context is good,
because is disallows the latter case where one uses both X.` and X alone (which may lead to an
indirect second use of X.` via B later). If one needs X again, then one needs to use contraction
beforehand.

The variable rule is further unusual in that it requires the variable to be declared last in the
context. Recall that contexts do not allow arbitrary reordering of module variables. To type a
variable in a larger context, one must use rules weak and close-r to reduce the context before
applying var. The following example illustrates this:

weak

close-r

var
Γ, X: (D·S) ` X : D·S

Γ, X: (D·S), x:D ` X : S

Γ, X: (D·S), x:D, Y :T ` X : S

The example also shows that applying the variable rule in a context containing a value variable is
possible only if the variable has a suitable exponential.

Finally, the rules for subtyping and matching appear in Figure 11. From a technical point of
view, they are very similar to the rules in [19]. However, since type variables only range over base
types here, they are actually much simpler to work with. Subtyping can be decided easily, for
example.

Proposition 2. If Γ `M : Ξ m, then Γ ` m : Ξ in the interaction type system.

Together with the set-theoretic semantics for interaction types from the previous section, the
elaboration can be seen as the definition of a semantics for the module system. Prop. 1 states that
this semantics is implemented correctly.
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Γ ` C  D

Γ ` MC  MD Γ ` type ∃α. [=α]

Γ ` C  D

Γ ` type=C  [=D] Γ ` sig end {}

Γ ` Σ ∃α. S Γ, α, X:S ` sig D end ∃β. {E} ` not defined in D
Γ ` sig `(X): Σ, D end ∃α, β. {`:S, E}

Γ ` Σ ∃α. S Γ, α, X:S ` T ∃β. T
Γ ` functor(X : Σ)→ T ∀α. S ( ∃β. T

Γ, x:D ` Σ Ξ Γ ` C  D

Γ ` C → Σ D → Ξ

Γ ` Σ ∃α. S
Γ ` B·Σ ∃α.B·S

Figure 8: Module Type Elaboration

var
Γ, X:S ` X : S  X

type
Γ ` C  D

Γ ` type C : [=D] ?D
sig-i1

Γ ` struct end : {} {}

sig-i2
Γ `M : ∃α. S  t ∆, α, X:S ` struct D end : ∃β. {E} s ` not defined in D

Γ + ∆ ` struct `(X) = M, D end : ∃α, β. {`:S, E}
 let pack(α,X) = t in let pack(β, {b}) = s in pack(αβ, {` = X, b})

sig-e
Γ, Yi:Si, ∆ `M : Ξ t

Γ, X: {`i:Si}, ∆ `M [Yi 7→ X.`i] : Ξ let {`i = Yi} = X in t

functor-i
Γ ` Σ ∃α. S Γ, α, X:S `M : Ξ t

Γ ` functor(X : Σ)→M : ∀α. S ( Ξ Λα. λX:S. t

functor-e
Γ `M : ∀α. S ( Ξ t ∆ ` Y : S′  s Γ + ∆ ` S′ ≤ ∃α. S D, f

Γ + ∆ `M Y : Ξ[α 7→ D] t D (f s)

fn-i
Γ, x:D `M : Ξ t Γ ` C  D

Γ ` fn (x:C)→M : D → Ξ fn (x:D)→ t
fn-e

Γ `M : D → Ξ t Γ ` v : D

Γ `M(v) : Ξ t(v)

seal
Γ `M : Ξ t Γ ` Σ Ξ′ Γ ` Ξ ≤ Ξ′ c

Γ `M :>Σ: Ξ′  c t

Figure 9: Module Term Elaboration

return
Γ ` v : D

Γ ` return v : MD  return v
seq

Γ ` e1 : MD1  t ∆, x:D1 ` e2 : MD2  s

Γ + ∆ ` let x = e1 in e2 : MD2  let x = t in s

pair-e
Γ ` v : D1 ×D2 Γ, x:D1, y:D2 `M : Ξ t

Γ ` let (x, y) = v in M : Ξ let (x, y) = v in t

sum-e
Γ ` v : D1 +D2 Γ, xi:Di `Mi : Ξ ti for i ∈ {1, 2}

Γ ` case v of inl(x1)⇒M1; inr(x2)⇒M2 : Ξ case v of inl(x1)⇒ t1; inr(x2)⇒ t2

Figure 10: Module Expression Elaboration
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Γ ` [=D] ≤ [=D] λX.X Γ ` MD ≤ MD λX.X

Γ, x:D ` S ≤ T c

Γ ` D → S ≤ D → T λF. fn (x:D)→ c (F (x))

Γ, β ` S2 ≤ ∃α. S1 D, c Γ, β ` Ξ1[α 7→ D] ≤ Ξ2 d

Γ ` (∀α. S1 ( Ξ1) ≤ (∀β. S2 ( Ξ2) λF.Λβ. λX. d (F D (c X))

Γ, x:D ` S ≤ T c

Γ ` D·S ≤ D·T λX.c X

Γ ` {} ≤ {} λX.X

Γ ` {E} ≤ {F} c

Γ ` {`:S, E} ≤ {F} λX. let {` = Y, b} = X in c {b}
Γ ` S ≤ T c Γ ` {E} ≤ {F} d

Γ ` {`:S, E} ≤ {`:T, E} λX. let {` = Y, b} = X in let {b1} = d {b} in {` = (c Y ), b1}
Γ ` S ≤ T [α 7→ D] c

Γ ` S ≤ ∃α. T D, c

Γ, α ` S ≤ Ξ D, c

Γ ` ∃α. S ≤ Ξ λX. let pack(α, Y ) = X in pack(D, c Y )

Figure 11: Module Subtyping and Matching

6 Type Checking
For practical applications, we want to implement module type checking and inference. Compared
to [19], the main difficulty with our module system is that the elaboration rules are not obviously
syntax-directed, mainly because the structural rules from Fig. 4 can be applied in many ways.
Indeed, there are many ways to deal with the exponentials and we want to construct a typing
derivation that elaborates modules to efficient systems-level programs. For example, suppose we
have a module term that contains a module variable X such that X.`1 is used once and X.`2 is
used twice. This is possible in a situation where X: !{`1: Σ1, `2: Σ2} is in the context. However,
the placement of the exponential is not ideal. It would be better to use X: {`1: Σ1, `2: !Σ2}. In the
former case, the whole module X would get an additional index parameter in elaboration, while in
the second case only the `2-part gets one. Furthermore, even when exponentials are unavoidable,
(unit + unit)·S is preferable to !S, as a value of type unit + unit is likely to be compiled more
efficiently than one of type raw at the systems level.

One problem is to decide where to place exponentials. But notice that exponentials of the
form D·S provide more fine-grained control over duplication than just !S. In particular, unit·S
is essentially as good as S. After elaboration, these two types differ only in the presence of an
additional argument of type unit, which we can expect to be optimised away later. We therefore
restrict our attention to normal form types, which are defined by the following grammar.

S ::= [=D] | MD | D·{`i:S} | D·(∀α. S ( Ξ) | D·(D → Ξ)

Ξ ::= ∃α. S

The cases for S that do not appear under a bang are types where duplication is applicable.
The new structural rules allow us to deal with the exponentials in a syntax-directed manner.

For normal form types, the placement of exponentials is determined by the types. For example, a
term of the form functor(X : Σ1)→ Σ2 must have a type of the formD·(∀α. S ( Ξ). To construct
a typing derivation for a term of this type, we can always just start by applying rule close-r
first. The applications of other structural rules on the left can be deferred, e.g. to until we get to
the leaves. These uses are captured by the following lemma.

Lemma 1. Suppose ∆ is a context that declares value variables of the types D1, . . . , Dn. Then
the following rules are admissible.

D1 × · · · ×Dn C D

Γ, X: (D·S), ∆ ` X : S  . . .

Γ, X1: (D′·S), X2: (D′′·S), ∆ `M : Ξ . . . D′ +D′′ C D

Γ, X: (D·S), ∆ `M [X1 7→ X,X2 7→ X] : Ξ . . .

Proof Sketch. To derive the rule for variables, one first (starting from the conclusion) removes
the context ∆ using rules weak and close-r. Each application of close-r adds an exponential
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Di·(−) to the type after the turnstile. After removing ∆ one thus has an exponential for each
value variable in ∆. Using digging, subtyping and var, one can then complete the derivation.

The following example illustrates the approach (omitting the elaboration-part):

close-r

weak

close-r

digging,subtyping

var
Γ, X:D1·(D2·S) ` X : D1·(D2·S)

Γ, X:D·S ` X : D1·(D2·S)

Γ, X:D·S, x:D1 ` X : D2·S
Γ, X:D·S, x:D1, Y :T ` X : D2·S

Γ, X:D·S, x:D1, Y :T, y:D2 ` X : S

Notice that one can always take raw for D in the lemma.
The task of type checking a module term M is now to construct a derivation that gives M a

normal form type. In general, there will be many possible choices for the exponentials in the type
of M . In order to explain the construction of the typing derivation, we first consider the trivial
choice, where all exponentials are raw. This will be the basis for a better choice of exponentials
below. We use the term copyable types for normal form types in which all exponentials are raw.

For normal form types, typing is essentially syntax directed. If one considers only copyable
types, then the types are determined by the terms:

Lemma 2. For any well-formed context Γ (see Fig. 1), we have:

• For any C, there exists at most one D such that Γ ` C  D.

• For any Σ, there exists at most one S such that Γ ` Σ S.

• For any M , there exists at most one copyable Ξ with Γ `M : Ξ m.

The proof is a straightforward induction.

Proposition 3. There is an algorithm, which, given Γ and M , computes a copyable type Ξ and
a program m such that Γ `M : Ξ m, if such Ξ and m exist, and rejects otherwise.

Proof Sketch. If one restricts attention to copyable Ξ, then positions where an exponential can
appear in the type are uniquely determined, cf. Lemma 2. This makes the elaboration rules
essentially syntax-directed. For example, a term of the form functor(X : Σ1) → Σ2 must have a
type of the form !(∀α. S ( Ξ).

Only rule sig-e remains as a source of non-syntax-directedness. To deal with it, we first prove
the property of the proposition under the assumption that Γ does not contain variables of record
type. The general assertion follows, since such variables can be eliminated first using sig-e. The
proof of the property goes by induction on the term M . We show representative cases:

• M is functor(X : Σ) → N . The type must have the form !(∀α. S ( Ξ). By applying
rule close-r, the goal reduces to deriving M :∀α. S ( Ξ in context Γ, x: raw, for fresh x.
Apply rule functor-i. It now remains to derive N : Ξ in context Γ, x: raw, α, X:S. If S
is a record type, then we use sig-e in conjunction with dereliction and, if X is needed
more than once, also contraction to bring the context in a form where we can apply the
induction hypothesis. Then we can complete the derivation using the induction hypothesis.

• M is N Y . We can apply rule functor-e. By applying the induction hypothesis to N , we
get a type, which should be of the form !(∀α. S ( Ξ). If it is not, we reject. Otherwise,
dereliction gives us that N also has type ∀α. S ( Ξ. We now check the type of Y using the
variable rule from Lemma 1 and verify the matching hypothesis of rule functor-e. For the
latter, note that subtyping is not hard to decide, since variable range over base types only.
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It is now not hard to compute a better choice of exponentials for the derivations with copyable
types. If one replaces each exponential types !S with α·S for fresh α, then the rules from Lemma 1
lead to a number of C-side conditions that just need to be solved. If α is a type variable and
D1 C α, . . . ,Dn C α are all the constrains with α as an upper bound, then it is correct to let
α := rawk where k ≥ size(Di) for all i, and where the size of type variables is defined to be ∞.
By solving the constraints in the right order, one obtains a simple way of computing more precise
exponentials. It amounts to a type-based flow analysis and appears to work well in experiments
with a prototype implementation.

For the above example of a module term that uses a module variable X such that X.`1 is used
once and X.`2 twice, the outlined approach would give the type raw0·{`1: raw0·Σ1, `2: raw1·Σ2}
to X. One may identify raw0 with unit.

7 Example Applications and Directions
Having motivated the module system as a convenient formalism for programming language appli-
cations of the goi, we ought to outline intended applications of the module system and potential
benefits of its use. In this section, we assume that all module types have exponentials placed like
in normal form types. Since these are intended to be computed automatically, we do not show
them and treat them as if they were written with invisible ink.

The first example, which uses all the features of the module system, explains why we believe
that the module system will make working with goi-constructions easier. Suppose we want to
define a goi-interpretation for a higher-order functional programming language with call-by-value
semantics. For instance, we may want to use a call-by-value language for hardware synthesis. An
efficient goi-implementation of call-by-value is not completely straightforward.

Let us outline how to do it for the simply-typed λ-calculus with types X,Y ::= N | X → Y . We
want to implement call-by-value evaluation efficiently. To be able to see the evaluation strategy,
let us assume that the λ-calculus has a constant print : N→ N for outputting numbers, and that
there is a corresponding effectful operation in the systems-level language.

To implement call-by-value evaluation, one can translate a closed λ-term t:X to a module of
typeMJXK, as defined below, where IJXK is defined by induction in the type X:

MJXK := sig
T: IJXK

,
eval: M

(T.t)
end

IJNK := sig

type t = int
end

IJX → Y K := sig
type t, /∗ ab s t r ac t ∗/
T: functor (X: IJXK) → sig

T: IJY K,
apply: t × X.t → M(T.

t)
end

end

Thus, a term of type N is translated essentially just to a computation eval : Mint that computes the
number and performs the effects of term t. A term of type N→ N is translated to a computation
eval : Mt, which computes the abstract function value and performs the effects of doing so, and a
function apply : t × int → Mint for function application. In the higher-order case, where X is a
function type, the function apply can make calls to X.apply. If Y is also a function type, then the
module T : IJY K defines the apply-function for the returned function. The idea comes from [23],
where the translation is described in more detail.

Defining the translation from a term t:X to a module of typeMJXK is verbose, but essentially
straightforward. Examples for application and the constant print:N→ N are shown below.
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Jprint : N→ NK =
struct

type t = unit ,
T: functor (X: IJNK) →

sig
T = struct type t =

int end
fn apply(f:t, x:int)

→
let y = print(x) in

return y
end

eval = return ()
end :> MJN→ NK

Jt1 t2 : Y K =
struct

T1 = Jt1 : X → Y K,
T2 = Jt2 : XK,
S = T1.T(T2),
T = S.T,
eval = let f = T1.

eval in
let x = T2.

eval in
S.apply(

f, x)
end :> MJY K

It should not be hard for a reader familiar with ML-like languages to fill in the rest of the details.
If one adds a fixed-point combinator to the module system, then this approach can be extended
to a full programming language.

A direct translation of the same translation to the goi requires quite a bit more effort, how-
ever [23]. It is also possible to use an interaction calculus like in Section 5.1. This is described in [22,
23]; the work reported there amounts to working directly with the elaboration of the above mod-
ules. For example,MJX → Y K elaborates to ∃α. {eval: Mα, T: {t: [=α], T: ! (∀β. Sβ ( ∃γ. {T:Tγ , apply: !(α× β → Mγ))}
ifMJXK andMJY K elaborate to ∃β. Sβ and ∃γ. Tγ respectively. Working with such types is rather
cumbersome, however, as one needs to pack and unpack existentials often. By allowing type dec-
larations and type abstraction, the module system takes care of this task. Also, we hope that the
above module typeMJN→ NK is easier to understand than its elaboration.

7.0.1 Directions

Having given an example where the module system simplifies existing work, we conclude by out-
lining where it may be useful as a basis for new work.

Parallelism. Dal Lago et al. [4] have given a parallel implementation of call-by-value in a multi-
token goi, where there is not just a single message being passed around a message-passing graph,
but many at the same time.

A similar effect can be achieved using the par-monad [16] in the above modular implementation
of call-by-value. Suppose the monad of the systems-level language integrates the par-monad for
parallel computation. This monad provides write-once references that can be used to synchronise
parallel processes. For any type A there is a new type IVar(A) of a write-once reference that may
be empty or contain a value of type A. There is an operation new : M(IVar(A)) for creating new
reference cells. An operation put : A→ IVar(A)→ Munit allows one to write a value into the cell.
An operation get : IVar(A) → MA reads from the reference. If get cannot read a value because
the cell is empty, then it will wait until a value has been written into the cell by another process.
Finally, there is an operation fork(e) that forks off a new process that executes e.

With the par-monad, the above typesMJXK and IJXK can be modified to allow parallel compu-
tation. Change the types of eval and apply to eval : IVar(T.t) and apply : IVar(t)×IVar(X.t)→
IVar(T.t). Executing the eval-computation for Jt:XK now only enables the computation of t. In
essence, eval creates an IVar for each subterm of t and forks processes that will fill these IVars
with the value of the subterm, once all the values required to do so have appeared in their IVars.
The return value of eval is not the value of the term, but an IVar in which the value will appear.
To illustrate the idea, let us define eval for a primitive addition operation Jt1 + t2 : NK:
eval = let c1 = Jt1 : NK.eval in let c2 = Jt2 : NK.eval in let res = new in

fork (let v1 = get in let v2 = get in put (v1 + v2) res);
return res

This approach to parallel computation seems similar to the multi-token computation of [4], if
one thinks of the multiple tokens as values materialising in IVars. The effect of eval is implicitly
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built into the model. While the detailed correspondence remains to be worked out, it is an example
of the kind of questions one can study with the modular formulation of the goi.

Game semantics. It is also interesting the use the modular formulation to study game semantics
from an implementation-oriented perspective. Suppose we have a module of type IJXK that we
can interact with. What is the trace of actions that can appear in the interaction? If X is N, then
we can evaluate eval and we obtain an integer i as result. If X is a function N→ N, then we can
evaluate eval, but we cannot call apply right away, as the type t is abstract and we do not have
a value of it yet. But evaluating eval gives us some value of type t, let us call it ∗ (we cannot
inspect it because of abstraction). With this value, we can call apply(∗, i) with any argument i
number. The result will be the return value j of the implemented function.

So, in the case of X = N, the traces of interaction have the form eval?, eval!(i), where “eval?”
represents the action of starting the evaluation of eval and “eval!” the answer. In the case of
X = N → N, the traces of interaction have the from eval?, eval!(∗), apply?(∗, i), apply!(j). In
both cases, interleavings of such traces are possible as well. Note that type abstraction enforces a
particular ordering of messages in the case of functions. When we compare the traces to Abramsky
and McCusker’s call-by-value games [3], we find that the traces correspond to the plays in the
arenas of these games. This seems to remain true for arbitrary X. So, the module system may
allow for a natural formulation of game semantics in a way that is close to actual implementations.

8 Conclusion
We have used the structure of the Geometry of Interaction to show how to extend first-order
programming languages with an ML-style module system. The module system can be seen as a
natural higher-order generalisation of systems-level linking. Even at higher order, functor applica-
tion remains essentially linking. The module system is an improvement over standard systems-level
linking. It supports standard first-order linking without overhead, but can also handle higher-order
modules. The module system was formulated to be suitable for implementation. Its definitional,
first-order nature may make the module system particularly suitable in conjunction with link-time
optimisations, see e.g. [14]. Only the choice of raw for abstract types is a simplification for sim-
plicity. This can be improved by using rawk instead. To do so, one can extend the module system
to keep track of the sizes of types. Experience with an implementation of the application from
Section 7 suggests [23] that this will be enough for an efficient implementation of higher-order
modules.

The module system captures the central structure of the goi in simple programming-language
terms. It abstracts from low-level implementation details. Especially for programming-language
applications, where one is interested in efficient implementation, it is not a small task to account
for them. We believe that this is a limiting factor in research on applications of the goi, as one
needs to expend a good amount of effort to work out such details every time. We hope that
the module system can help to address these limitations better than this has been the case with
variants of System F so far and make applications of the goi easier and more accessible. We would
like to start future work at the point of Section 7 rather than having to begin from Section 1.2
again.
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