Functional Programming in
Sublinear Space

Ulrich Schépp

University of Munich

This work was supported by:
Institute of Advanced Studies
University of Bologna

Joint work with Ugo Dal Lago

Programming with Sublinear Space

Computation with data that does not fit in memory
« Input s stored by the environment, allows random access.
+ Output is provided piece-by-piece.

Writing such programs can be complicated

- Cannot store intermediate values.
« Recompute small parts of values only when they are needed.

Language/Compiler Support

How can a programming language support us in writing such
algorithms?

Can we find a programming language that

- allows us to forget that certain values do not fit in memory,
at least to a certain extent;

- hides on-demand recomputation behind useful abstractions;
- delegates some tedious programming tasks to a compiler;

- allows for an easy combination of a sublinear space algorithms
with the rest of the program?

Language/Compiler Support

Existing work on implicit and logical characterisations of LOGSPACE
explores possible abstractions:

- restricted primitive recursion [Mgeller-Neergaard 2004]
+ subsystem of Bounded Linear Logic [Sch. 2007]
+ (LOGSPACE predicates: [Kristiansen 2005], [Bonfante 2006])

Supports our goal of finding a functional programming with
primitives for sublinear space programming.

Functional Programming With Sublinear Space

1. Computation with external data
How should we work with data that does not fitinto memory in a
functional programming language?

2. Deriving the functional language IntML

3. Programming in IntML

Sublinear Space Complexity

In complexity theory, one modifies the machine model to account
for computation with external data:

Turing Machines == Offline Turing Machines

Offline Turing Machines

-~

—
LTI Il

read-only input tape

-—

[[[@] T work tape

LTI I T T InTTTTT] write-only output tape

—

Input and output tape belong to environment.
Only the space on the work tape(s) counts.

Offline Turing Machines

Composition is implemented without storing intermediate result.

— —
— —
[OTOLT T

 I—
-— -—

. -
N o |

-— —
(LTI I fgrrrral (LTI I Aol
— —

— —

= bidirectional data flow

Offline Turing Machines

An Offline Turing Machine can be seen as a convenient
abbreviation for a normal Turing Machine that

- obtains its input not in one piece but that may request it
character-by-character from the environment;

- gives its output as a stream of characters.

Formally, we may describe this as a computable function that
describes how the machine interacts with it environment:

Request for output character
[l_ Output character

N + (State x X)) — ¥ + (State x N) .

[T~ Request for input character
Answer for input request

Functional Programming with External Data

What relates to Offline Turing Machines in the same way that
functional programming languages relate to Turing Machines?

. . Functional Languages
Turing Machines (OCaml, Haskel% ...)g

Offline ?
Turing Machines

Functional Programming with External Data

What relates to Offline Turing Machines in the same way that
functional programming languages relate to Turing Machines?

Functional Languages

Turing ’I‘ad“”es (OCaml, Haskell, ..)
Offline .

Turing Machines

1. Understand the step from Turing Machines to Offline Turing
Machines in terms of the Int construction
[Joyal, Street & Verity 1996].

2. Make use of the generality of the Int construction and apply it
directly to a functional language.

3. Derive a functional language from the resulting structure.

Int Construction

The Int construction can be seen as a general method for turning a
model of unidirectional data flow into one with bidirectional data
flow.

« Gol situation [Abramsky, Haghverdi, Scott]

- Related to game semantics, context semantics, read-back from
optimal reduction, ...

Given a ‘computation model’ B, the Int construction yiels a model
Int(B) with bidirectional data flow that is built out of B.

Int Construction

Traced Monoidal category B

- Category B (here: sets and partial functions)
+ Monoidal structure (+,0) (here: disjoint union)
- Trace (here: while loop)
fA+B— C+B
Tr(f): A— C

Tr(f)(a) = Loop(inl(a))

L (e if f(x) = inl(c)
oop(x) = Loop(inr(b)) if f(x) = inr(b)

Category Int(B)

- Objects are pairs of B-objects X = (X, XT)
- Morphismf: X — YisaB-mapf: X" + Y~ — Yt + X",

Q%X X4 xt

Y Y%EFYJr

Example: Offline Turing Machines appear as morphisms
(State x N, State x) — (N, X).

« Composition
X
X
@
z (@

Z

Structure in Int(IB)

Int(B) has well-known structure that allows us to construct
‘message passing networks’ easily.

- Amap fromf: A— Bin B induces amap (0,A) — (0,B)

in Int(B).
O#A
0lvB

This gives a full and faithful embedding.

+ We shall also use [A] = (1,A), where 1 is a singleton.
The value in A is computed only after an explicit request.

I@A
11vB

Structure in Int(IB)
Int(B) has a monoidal structure ®

X@Y)" =X"+Y" I'=(0,0)
XVt =xt4 vt

XeU

X U U
Y v v

YoV

Structure in Int(IB)

Int(B) is compact closed

(X7, XT)* = (XT,X7)

O L

Int(B) is monoidal closed with X — Y = X* @ Y

My= UL L T
u N U}A
A*®B A A
Ar A*®B

Structure in Int(IB)

Int(B) has B-object indexed tensors

- +
_ — _ +
(®,x) =Axx (®,x) =Axx
(given suitable structure in B, e.g. products)

Example
B sets with partial functions, (4, 0) coproduct, A finite

Q) X=xe--0X
A S————
|A] times

Useful morphism
f:l— ®A [A]

givenbyf: Ax 1 — Ax Awithf(a,()) = (a,a).

Int Construction and Space Complexity

The functions that represent Offline Turing Machines
(State x ¥) + N — (State x N) + X
appear in Int(Pfn) as morphisms of type
Xpe N %) — (N — %),

where we write just N for (0, N) and X for (0,).

Int Construction and Space Complexity
The functions that represent Offline Turing Machines
(State x ¥) + N — (State x N) + X
appear in Int(Pfn) as morphisms of type
Qe ¥ —) — (N—),
where we write just N for (0, N) and X for (0,).

The structure of Int(Pfn) is useful for working with OTMs.
« Composition:

®5®5,(Nﬂ2)%®S(Nﬂz)i(Nﬂz)

« Input lookup is just (linear) function application.

A Functional Language for Sublinear Space

1. Computation with external data

2. Deriving the functional language IntML

1. Start with a standard functional programming language.
2. Apply the Int construction to a term model B of this language.

3. Derive a functional language from the structure of Int(B). It
can be seen as a definitional extension of the initial language.

4. ldentify programs with sublinear space usage.

3. Programming in IntML

A Simple First Order Language

Finite Types
AB:=a|A+B|1|AxB

Ordering on all types

ming | succa(f) | eq,(f, 1)

Explicit trace (with respect to +)
trace(c.f)(g)
(sufficient for now, could use tail recursion)
Standard call-by-value evaluation, constants unfolded on demand

Chosen for simplicity and to make analysis easy.
Richer languages are possible.

Examples
Example: Addition

X:a,y: aladd(xy): a
With syntactic sugar for tail recursion:

add(x, y) =
if y = min then x else add(succ x, pred y)

With explicit trace:

add(x, y) =
(trace p. case p of
inl(z) -> inr(z)
| inr(z) -> let z be <x, y> in
if y = min then inl(x) else inr(<succ x, pred y>)
) <x,y>

Applying the Int Construction

We apply the Int construction to a term model B of this simple
functional language.

We can use the structure in Int(B) to construct and manipulate
message passing networks

- whose nodes are given by terms of the simple language; and
- which are themselves implemented by terms in this language.

X Y

Z corresponds to term of type
Xt+YT+Z2 = Zt 4+ X +Y

= Definitional extension of the original language.

The Functional Language IntML

IntML extends the simple first order language with syntax for Int(B),
where B is the term model of the simple first order language.

IntML has two classes of terms and types:
- Working Class (for B)

AB:=a|A+B|1]|AxB

Terms from the simple first order language + unbox
« Upper Class (for Int(B))

XY:=[Al | XQY|A-X—Y

All computation is being done by working class terms. Upper class
terms correspond to morphisms in Int(B), which are implemented
by working class terms.

IntML Type System — Working Class

Usual typing rules, e.g.

HfA Yhkg:B
Y {(fg):AxB

There is one additional rule for using upper class results in the
working class:

Y| Ft:[A
Y F unbox t: A

IntML Type System — Upper Class

The upper class type system identifies a useful part of Int(B).
Types
X,Y:=[Al | XQY|A-X—Y

(Ais a working class type)
In the syntax we write A - X for @, X.

Typing Sequents
x |X1:A1'X1, e Xnt Ap- XpEEDY

(22 is a working class context)
The restrictions on the appearance of), are motivated by
Dual Light Affine Logic [Baillot & Terui 2003].

IntML Type System — Upper Class

A sequent
pM ’X1:A1-X1, e XntAp- XpEEDY

denotes morphism

108 (®A1 Xe-eQ, Xn) — QY inintB).

{@2 ®A1 X1 l@z ®An Xn

t

QxY

Upper Class Typing Rules

Van ST % A XEx: X
Y|, x:A-XEs: Y

LocWeak
(LocWeak) T S (B x A) X s: ¥

Y|, x:A-XEs: X

C
(Cong) ST X B X s X

A=ZBeglxA=A

Y|, x:A-XEs:Y
S|TFws:A-X oY

(—o-1)

R|TFs:A-X—Y S|AFt:X
S|T,A-AFst:Y

(o

(straightforward rules for ®)

Upper Class Typing Rules

Y|Tks:X YA x:A-X,y:B-XHt: Y

C
(Contr) Y |A, (A+B)-Tlcopysasx,yint: Y

YHf:A+B Y, c:A|TkEs: X Y, d:B|THt: X
(Case)

Y| T'F casefofinl(c) = s|inr(d) = t: X

YEfA
SRISINS 0

SITFs: Al S, c:A|AFt: [B]
Y|T,A- At letsbe|c|int: [B]

([]-B)

Upper Class Typing — Examples

f= Ax. \y.let xbe[c] inlety be [d] in [add c d]

o] —a-la] — o]

g = M. Ax. let x be [c] in f[c] [c]
ta-(lo] — (o] — [8]) — [a] — [4]

h = Ay.copyyasy;,y,in
(lety, be[c]in [m1 c], let y, be [c] in [m2 c])
f(Y46) -l x f] — [o] @ [A]

Terms do not contain type annotations.
Conjecture: Inference of most general types is possible.

(have an implementation for the type system without rule (Cong);
unification up to congruence is decidable).

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]

21 [o] — (axl) - [a] — [a]

represents a working-class term of type

Ex(Ixa+(axl xa+1) — X x (Ix14+ (axl x1+a))

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]

L-la] —o (ax1) - [o] — [a]

represents a working-class term of type

Ex (Ixa+ (axl xa+1) — Ex (Ix1+ (axl x1+a))

fun x167 -> let (trace fun x166 -> case x166 of inl(x0) -> let x0 be <x5, x0> in case x0 of inl(x4)
-> inr(inr(inr(inl(<x5, x4>)))) | inr(x4) -> inr(inr(inr(inr(inr(inr(inr(inl(<x5, x4>)))))))) |
inr(x165) -> case x165 of inl(x6) -> let x6 be <x11, x10> in inr(inr(inl(<x11, inl(x10)>))) |
inr(x164) -> case x164 of inl(x12) -> inl(x12) | inr(x163) -> case x163 of inl(x18) -> let x18 be
<x23, x18> in let x18 be <x21, x22> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x23, x22>))))
I | inr(x162) -> case x162 of inl(x24) -> let x24 be <x29, x24> in let x24 be <x24, x28> in
let x24 be <x26, x27> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<<x29, x26>, <x27,
x28>>))))))))))))) | inr(x161) -> case x161 of inl(x30) -> let x30 be <x35, x34> in inr(inr(inr
(inr (inr (inr(inl(<x35, inl(x34)>))))))) | inr(x160) -> case x160 of inl(x36) -> let x36 be <x41,
x40> in inr(inr(inl(<x41, inr(x40)>))) | inr(x159) -> case x159 of inl(x42) -> let x42 be <x47,
x42> in case x42 of inl(x46) -> inr(inr(inr(inr(inl(<x47, x46>))))) | inr(x46) -> inr(inr(inr(
inr (inr (inr (inr (inr (inr (inl (<x47, x46>)))))))))) | inr(x158) -> case x158 of inl(x48) -> let x48
be <x53, x52> in inr(inr(inr(inr(inr(inr(inl(<x53, inr(x52)>))))))) | inr(x157) -> case x157 of
inl(x54) -> let x54 be <x59, x58> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x59, <>>
I | inr(x156) -> case x156 of inl(x60) -> let x60 be <x65, x64> in inr(inr(inr(inr(
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (<x65, <x64, <>>>)))
DN DD | inr(x155) -> case x155 of inl(x66) -> let x66 be <x71, x70> in inr(inl(
<x71, <min(* 'al2 *), x70>>)) | inr(x154) -> case x154 of inl(x72) -> let x72 be <x77, x72> in
let x72 be <x75, x76> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(...

(second half of the term omitted)

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(inr(<>))>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(<>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 o) —o (ax1) - [a] — [a]

represents a working-class term of type

Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 o) —o (ax1) - [a] — [a]

represents a working-class term of type

Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
:1-la] — (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<>>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, inl(<<>, <>>)>

’

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, inl(<<>, inr(<>)>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, <<>, inr(<>)>>

’

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(<>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, <inr(<>), <>>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, <>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, <>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<<>, inr(<>)>, <<>, <>>>

’

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, <<inr(<>), <>, <s>>>

’

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, inl(<<inr(<>), <>>, <>>)>

’

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, inr(inl(<<inr(<>), <>>, <>>))>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
:1-la] — (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(inl(<<inr(<>), <>>, inl(<>)>))>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
t 1 o] —o (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))

<<>, inl(<<inr(<>), <>>, inl(<>)>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, <<inr(<>), <>>, inl(<>)>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, <<>, inl(<>)>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, inl(<>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, <inl(<>), <>>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<<>, inr(<>)>, inl(<>)>, <>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
:1-la] — (ax1) - [a] — [a]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<<>, inr(<>)>, inl(<>)>, inr(<>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
1 fo] —o (ax1) - [a] —o o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, <inl(<>), inr(<>)>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<<>, inr(<>)>, inr(<>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, <inr(<>), inr(<>)>>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(<>)>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
21 [a] = (axl) - [a] — [o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(inr(<>))>

Y¥=1
a=1+1

Upper Class Typing — Examples

f=Mx. \y.let x be [c] inlet y be [d] in [add c d]
1 fo] —o (ax1) - [a] —o o]
represents a working-class term of type
Ex(Ixa+(axl xa+1) —Ex (Ix14+ (axl x1+a))
<<>, inr(inr(inr(<>)))>

Y¥=1
a=1+1

Hacking

Have we captured all the structure of Int(IB)?

Hacking

Have we captured all the structure of Int(IB)?
No! Int(B) has a lot more structure!

Can we ever capture all the useful structure?

Hacking

Have we captured all the structure of Int(B)?
No! Int(B) has a lot more structure!

Can we ever capture all the useful structure?
Let the programmer define the structure he needs himself!

S, X Fg: Xt @
(Hack) 5T hack(cg): X

X

A" =1 AT =A
XQY)" =X +Y XVt =xt4vt
AX—oY) =AxXT+Y (AX—oY)T=AxX +VY'

Complexity results remain true in presence of (Hack).

Hacking — loop

loop: a- (7 [a] —o [a+ F]) —o [a] — []

loopfly] iffxqis[inl(y)]

Loop fxg = xS
Z] if fxo is [inr(z)]
loop = hack x. case x of
| inl(y) -> let y be <store, stepg> in
case stepq of
| inl(argq) -> let argq be <argstore, unit> in
inl(<store, inl(<argstore, store>)>)
| inr(contOrStop) -> case contOrStop of
| inl(cont) -> inl(<cont, inr(<>)>)
| inr(stop) -> inr(inr(stop))
inr(z) -> case z of
| inl(basea) -> let basea be <junk, basea> in
inl(<basea, inr(<>)>)
| inr(initialq) -> inr(inl(<<>, <>>))

Hacking — loop

loop: a- (- [a] —o [a+ f]) — [a] — [[]

loopfly] iffxqis[inl(y)]

loop fxp = {[z] if fxg is [inr(z)]

X=a-(7" la] —[a+p8]) — [a] — 8]
X" 2axyxl+axat+axf+a+l
(@,9.0) | (a.a) N
(toon) <
. (a,g.a) (@',) N

Xt2axyxa+ axl +14+p

Functional Programming in Sublinear Space

1. Computation with external data
2. Deriving the functional language IntML

3. Programming in IntML
How easy is it to write sublinear space algorithms in IntML?
Consider two known LOGSPACE algorithms:

+ Checking acyclicity in undirected graphs
- Recursion by computational amnesia

Functional Programming in Sublinear Space

1. Computation with external data
2. Deriving the functional language IntML

3. Programming in IntML
How easy is it to write sublinear space algorithms in IntML?
Consider two known LOGSPACE algorithms:

+ Checking acyclicity in undirected graphs
- Recursion by computational amnesia

Graph Algorithms

Represent graphs by upper class types of the form

G(a) = ([o] = [2]) © ([a x o] = [2]).

- Carrier set: o
- Set of nodes: [a] — [2]
- Edge relation: [a x a] — [2]

We often omit the index type, writing just X — YforA-X — V.

Graph Algorithms

Represent graphs by upper class types of the form
Gpy(a) =(B-la] =2 @ (v-[axa] —[2]).

- Carrier set: o
- Setof nodes: 3 - [a] —o [2]
- Edge relation: v - [a x o] — [2]

We often omit the index type, writing just X — YforA-X — V.

Graph Algorithms

Represent graphs by upper class types of the form
G(r) = ([o] = [2]) ® (e x o] — [2]).

Suppose we write an upper class term containing only the type
variable a. Its translation to a working class term then has a
working-class type containing only the variable a.

- For any working class type P(«) there are constants k and /
such that, for any closed type A with n values, the type P(A) has
at most nk + / values.

- If Ais a closed type with n values then G(A) can stand for
graphs of size n.

=- With a binary encoding, tokens can be stored in logarithmic
space.

LOGSPACE Algorithm for
Checking Acyclicity of Undirected Graphs

Check that any walk according to the right-hand-rule returns to the
node it started from through the edge over which it left.
[Cook & McKenzie 1980]

LOGSPACE Algorithm for
Checking Acyclicity of Undirected Graphs

Check that any walk according to the right-hand-rule returns to the
node it started from through the edge over which it left.
[Cook & McKenzie 1980]

Walk following the Right-Hand-Rule

checkpathy, ,: G(a) — [a] — [a] — [2]
checkpathy, , = Agraph. \ie.
copy graph as graph, graph,, in
let ie be [e] in
if2 (edge graph, [e])
(Loop (Aw. let w be [p] in
if2 [dstp = srce]
(if2 [src p = dst e] [return(true)] [return(false)])
(let nextEdge graph2 [p] be [d] in
[continue({(dst p, d))])
) [e]

[true]

Using abbreviations like src e = 71 e and return x = inr(x) and
defined functions like if2.

Checking Acyclicity

iterator,, : (la] — [8)) — (8] — [8] — [8)) — [4]
iterator, = AX. \y.copy X as X1, X2 in
loop (Aw. let w be [e] in
if2 [y € = max] [return(m e)]
(lety (x1 [succ(ms e)]) 71 e] be [f] in
[continue(f, (succ(ms €)))]))
(let xo [min] be [f] in [{f, min)])

checkcycley, , : G(a) — [2]
checkcycley , = Agraph.
copy graph as graph, graph, in
iteratory « o, (Aie. let ie be [e] in
if2 (edge graph, [e])
(checkpath,, ., graph, [e])
[true])
and

Checking Acyclicity

The type of checkcycley, , may be expanded to
A-(([o] = [2)) ® ([a x o] — [2])) — [2],
where A is the following type:

(2x(axa)x(2x(axa)x(2xa; x (e Xag)))+1xXay)xas X (ax
ax (ag X (a7 Xagxagxaig)))+(2x (axa)x (2x (axa)x(2x
ap X (agxaz)))+1xag)Xas X (axax(2xa1; X ((axax(ag X
(a13Xa14Xa15xa16))+axax(2><a17><(a><oz><(oz><a><(2><agl><
(ax (ax (CkQQX (0423><0@4><0425 Xazﬁ))))))))) xalgxalg)))) X (90

Checking Acyclicity

2
)

¢ >

08
Noq,, L 0f
MO0, "

Oial
00

0 ;.3 alaavatvy
07 §a0a0a0N y
o proothod
@
000..

Checking Acyclicity — Space Usage

An upper bound for the space needed to evalueate checkcycle, ,
can be read off from the network it compiles to.
To answer requests, we need to store

- the network that checkcycley, , compiles to;
- one token on this graph and its position.

Each edge of the network is annotated with a type A(«), so the size
of a token can be bounded statically by looking at all the types that
appear in the network.

- Given a graph of size n, we choose for a the type 2 x - .- x 2
(log n + 1 times), which is large enough to represent the graph.
« The size of values of A(«) is at most k - logn + /.
=- Token uses logarithmic space.

= Since network size is a constant, IntML-evaluation of
checkcycley ,, therefore remains in LOGSPACE.

A Functional Language for Sublinear Space

1. Computation with external data
2. Deriving the functional language IntML

3. Programming in IntML
How easy is it to write sublinear space algorithms in IntML?
Consider two known LOGSPACE algorithms:

+ Checking acyclicity in undirected graphs
+ Recursion by computational amnesia

Working with Binary Strings

Represent binary strings by the upper class type

where the type 3 contains elements for 0, 1 and a blank symbol.

Goal:
Implement (higher-order) combinators on strings that allow us to
work with large strings as if we had enough memory to store them.

Simple Examples

Empty String
zero: [a] — [3]

zero := Aw. [blank]

Appending ‘0’

succo = ([o] = [3]) = (o] — [3])
succy := Aw. i letibe[c]in
case (¢ = min) of inl(true) = [zero]
| inr(false) = w [pred]
Case distinction
if: ([o] = B]) = ([= B]) = ([o] = [3]) = ([a] — [3])
if := Aw. Awp. Awg. Ai. let w [min] be [c] in
case cof inl(blank) = wy i

| inr(zo0) = case zo of inl(zero) = wy i
| inr(one) = wy i

Simple Examples

Such combinators can be used for working with large words, e.g.

Aw. Av. succy (if w (succ zero) v)

So far, the combinators are very simple.

Can interesting combinators can be implemented in this way?

Function Algebras
BC™ [Murawski, Ong] and BC_ [Mgller-Neergaard]

Variants of primitive recursion on binary words that can be
evaluated in LOGSPACE.

- Example basic functions:
SUCCO(: y) = y0
iyt =14 ifyendfwith 1

f otherwise

+ Closed under composition

« Closed under (course-of-value) recursion on notation:
f = saferec(g, ho, h1, dy, d1) satisfies
f(X,e:y) =9g(X:y)
f(X,xi : y) = hi(X,x : f(X, x>>|di(X,x ;)| : ¥))

LOGSPACE evaluation of BC™ and BC_

Mgller-Neergaard proves LOGSPACE-soundness by implementing
BC_ in SML/NJ:

- Binary words are modelled as functions of type (N — 3).
- Function f(x; y) is implemented as SML-function of type

N—-3)— -+ > (N=3)—-(N=3).

+ Recursion on notation by computational amnesia
[Ong, Mairson]

Implementing Recursion by Computational Amnesia

g :(N—3)
hy :(N—3)— (N—3)
hy :(N—3)— (N—3)

f = saferec(hg,h1,g): (N — 3)

f(01011) = hy(h1(ho(h1(ho(9)))))

- Whenever h; applies its argument, forget the call stack and just
continue.

« When some h; or g returns a value, we may not know what to
do with it — we have forgotten the call stack.

= Remember the returned value (one bit) and its depth and
restart the computation.

[Mgller-Neergaard 2004] Vo3 MORBSULT = { depth = “1, xes = HONE, bt="1 }

fun saferec (g : program-(m — 1)-n)
(h0 : program-m-1) (d0 : program-m-0)
(b1 : program-m-1) (d1 : program-m-0)
(x1 : input) ... (xm : input)
(y1 : imput) ... (yn : input) (bt : int) =
let val result = ref NORESULT
val goal = ref ({ bt=bt, depth=0 })
fun loopl body = if body () then () else loopl body
fun loop2 body = if body () then () else loop2 body
fun findLength (z : imput) =
let fun search i = if z i <> NONE then search (i + 1) else i
in
search 0
end
fun x’ (bt : int) = x1 (1 + bt + #depth (!goal))
fun recursiveCall (d : program-m-0) (bt : int) =
let val delta = 1 + findLength (d x’ x2 ... xm)
in
if #depth (!goal) + delta = #depth (!result)
andalso #bt (!result) = bt
then #res (!result)
else
goal := { bt=bt, depth = #depth (!goal) + delta };
raise Restartn
end
in
(loopl (fn () => (* Loops until we have the bit at depth 0 *)
(goal := { bt=bt, depth=0 };
loop2 (fn () => (* Loops while the computation is restarted *)
let val res =
case x1 (#depth (!goal)) of
NONE => g x2 ... xm y1 ... yn (#bt (1goal))

| SOME b =>
let val (h, d) = if b=0 then (h0,d0) else (h1,d1)
in
b x’ x2 ... xm (recursiveCall d) (#bt (!goal))
end
in (result := { depth = #depth (!goal),
res = res,
bt = #bt (!goal) };
true)

end handle Restartn => false
0 = #depth (!result)));
#res (!result))
end

Control Flow

callcc: (v ([a] — B) —o [a]) — [@]

Implemented using hack:

(Yx(a+p)4+a)+1 —(x 1+ +1)+a
inr(x) — inl(inr(x))
inl(inr(a)) — inr(a)
inl(inl(g, inr(x))) — inl(inl(g, inl(x)))
inl(inl(g, inl(a))) — inr(a)

SML IntML

exception Restartn

recursiveCall =U
val NORESULT = { depth = "1, res = NONE, bt="1 } fun k -> fun state -> fun x ->
let x be [xc] in
fun saferec (g : program-(m —1)-n) let state be [statec] in
(h0 : progran-m-1) (d0 : progran-m-0) case and (succ (goaldepth statec) = (resultdepth statec)) (xc = (resultbit
(n1 : program-m-1) (d1 : program-m-0)
(x1 : input) : input) of
1+ nput) .. imputy (bt : int) = inl(true) -> [resultres statec]

let val result = ref NORESULT
val goal = ref ({ bt=bt, depth=0 })
fun loopl body = if body () then () else loopi body
fun loop2 body = if body () then () else loop2 body
fun findlength (z : input) =
let fun search i = if z i <> NONE then search (i + 1) else i

| inr(false) -> k [inl(<result statec, <xc, succ (goaldepth statec)>>)];

shiftarg =U fun x -> fun shift ->
fun i ->
let i be [ic] in

let shift be [shiftc] in
in x [add ic shiftcl;
search 0
end ;
innerloopbody =U
fun x’ (bt : int) = x1 (1 + bt + #depth (!goal)) . _ - .
fun recursiveCall (d : program-m-0) (bt : int) = fun g > f“: ho > f')"‘ Bl > fun x -
let val delta = 1 + findLength (d x’ x2 ... xm) fun state —> fun k =
in copy x as x1, x23 in
if #depth (lgoal) + delta = #depth (!result) copy x23 as x2, x3 in
andalso #bt (!result) = bt copy k as ki, k2 in
then #res (!result) let state be [statec] in
else let if3 (x1 [goaldepth statec])
goal := { bt=bt, depth = #depth (!goal) + delta }; (g [goalbit statec])
raise Restartn (h0 (shiftarg x2 [goaldepth statec])
end (recursiveCall ki [statec]) [goalbit statec])
in
(loopt (fn O

hi (shift 3 ldepth stat
(+ Loops until we have the bit at depth 0 %) (bt (shiftarg x3 [goaldepth stavec])

., depth=0 }; (recursiveCall k2 [statec]) [goalbit statec]) be [res]

Toop2 (£n O => (Loops while the computation is restarted *) in [inr(<<<goaldepth statec, res>, goalbit statec>, goal statec>)];
let val res =

case x1 (#depth (!goal)) of
NONE

(goal := { b

innerloop =U

gx2 ... xm yl ... yn (#6t (1goal)) fun g -> fun hO -> fun hi -> fun x1 -> fun bit ->
| SOME b => fun res ->

let val (h, d) = if b=0 then (h0,d0) else (h1,d1) let res be [resc] in

in

let bit be [bitc] in

h x’ x2 ... xm (recursiveCall d) (#bt (!goal)) let loop (fun state -> callcc (fun k -> innerloopbody g hO hi x1 state k))

. , [<resc, <bitc, min> (*goal*)>] be [finalstate] in
in Cresult i= { depth = #dopth (1goal), [if (resultdepth finalstate) = min then
Tes = res,
B = ot CgoaD) }; inr(result finalstate)
true)

else inl(result finalstate)];
end handle Restartn => false

0 = #depth ('result)));

saferec =U
#res (!result)) fun g -> fun hO -> fun h1 -> fun x1 -> fun bit ->
end let

loop (innerloop g hO hi xi bit) [<<max, min>, min>]
be [res] in [resultbit res];

Example — saferec

parity = Aw. saferec zero hg hy w
ho = Ax. Av. if v (succ; zero) (succg zero)
hi1 = Ax. Av. if v (succq zero) (succ; zero)

f= Aw.parity (succy succy w)

String Diagram for parity

0000000

@
\
S0 (R0=0-0=0-0

73207 Ia0a0

0%
H-:lo-m {00000

Working Class Term for parity

let (trace x9472. case x9472 of inl(x0) -> let x0 be <x5, x4> in inr(inr(inr (inr(inr(

inr (inr(
inr (inr(
inr (inr
inr (inr(
inr (inr(
inr (inr
inr (inr
inr (inr

inr (inr
inr (inr
inr (inr
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (inr (inr
inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (inr Ginr (inr (inr (inr (inr (inr (Ginr (inr
inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (Ginr Ginr (inr (inr (inr (inr (inr (Ginr (inr
inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (Ginr (Ginr (inr (inr (inr (inr (inr (Ginr (inr
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (Ginr (inr
inr (inr(
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inl (<x5, inr(x4)>)))))))))))))))
2333333333)3333333333333333333333333)333333)33)13)13)3))3))3))1))1))II)IINIINIIIIIIIIIDD
233)33)33)33)3))3))3))3))1))II)IINIINIIIIIIIIIDD
3333333333)33333333333333333333333333333333333333)33)33)3))1))3))13))))IINIIININIIIIIIID

...5 Megabyte more
(about 150 Kb if injections were represented efficiently)

Implementing Parity

The term parity is just an example to test saferec.

The standard algorithm for parity can be implemented easily:

parity =U fun x : ['a] --o [1+(1+1)] ->
let
loop (fun pos_parityU : ['a * (1+1)]->
let pos_parityU be [pos_parity] in
let x [pil pos_parity] be [x_pos] in
case x_pos of
inl(mblank) -> [inr(pos_parity)]
| inr(char) ->
if (pil pos_parity) = max then
[inr(<max, xor char (pi2 pos_parity)>)]
else
[inl(<succ (pil pos_parity), xor char (pi2 pos_parity)>)]
) [<min, false>]
be [pos_parity] in [pi2 pos_parity];

LOGSPACE Soundness and Completeness

Any upper class term
t: /(5 o] —o [3]) —o (C[P(e)] — [3])

represents a LOGSPACE function on binary words and any such
function can be represented in this way.

If we consider o as a natural number then t induces a function
0ot {0,115 — {0,1}=P(@),

as follows:
- Aword w € {0,1}= can be represented as a function in
(w): & [a] —o [3] by a big case distinction.
+ Then ¢, (w) is the word that (t (w)) represents.

The working-class term for t gives a LOGSPACE algorithm for the
function
W — g0|w‘(w) : {0,1}" — {0, 1}

LOGSPACE Soundness and Completeness

State of a LOGSPACE Turing Machine can be represented as a
working class value of type S(«).

Step function
input: [a] —o [3] - step: [S(a)] — [S(r) + S(a)]
step = Ax. letx be[s]in

let input [inputpos(s)] be [i] in
[...working class term for transition function ...]

Turing Machine
M: 2 (5] — [3]) — (© [P(a)] — [3])

M = Xinput. Aoutchar. 1oop step init

Conclusion

Space bounded computation has interesting structure,
that we have only just begun to explore.

The Int construction seems to be a good first step
for capturing that structure precisely.

Further Work
- Stronger working class calculi: Allowing (certain) function
spaces in the working class should allow us to work with
polylogarithmic space.
- Completeness: Can we get completeness by something less
trivial than hack?

