
..

Functional Programming in
Sublinear Space

Ulrich Schöpp

University of Munich

This work was supported by:
Institute of Advanced Studies

University of Bologna

Joint work with Ugo Dal Lago

.

. .

Functional Programming in
Sublinear Space

Ulrich Schöpp

University of Munich

This work was supported by:
Institute of Advanced Studies

University of Bologna

Joint work with Ugo Dal Lago

.

.20
10

-0
1-

11

Functional Programming in Sublinear Space



..

Programming with Sublinear Space

Computation with data that does not fit in memory
• Input is stored by the environment, allows random access.
• Output is provided piece-by-piece.

Writing such programs can be complicated

• Cannot store intermediate values.
• Recompute small parts of values only when they are needed.
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Functional Programming in Sublinear Space

Programming with Sublinear Space

• Computation with space smaller than the input;
or with data larger than the memory.

• Box depicts memory, cannot store much

• Can be complicated:

• Not enough space for all intermediate values
⇒ forget them, recompute

• Worse, not enough space to fully store intermediate value
⇒ recompute small part (which may depend on parts of
other forgotten values)

Next: Language/Compiler Support
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Language/Compiler Support

How can a programming language support us in writing such
algorithms?

Can we find a programming language that
• allows us to forget that certain values do not fit in memory,
at least to a certain extent;

• hides on-demand recomputation behind useful abstractions;
• delegates some tedious programming tasks to a compiler;
• allows for an easy combination of a sublinear space algorithms
with the rest of the program?
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Language/Compiler Support

Goal in PL theory:

• Give the programmer a PL with which he can express his
algorithmic intentions conveniently and which allows
him to delegete tedious task to the language or compiler.

• Surely, for programming with sublinear space useful
PL constructs must exist!?

• At least we should be able to do easilywhat people do in
complexity theory: Compose several algorithms with
sublinear space usage
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Language/Compiler Support

Existing work on implicit and logical characterisations of LOGSPACE
explores possible abstractions:

• restricted primitive recursion [Møeller-Neergaard 2004]
• subsystem of Bounded Linear Logic [Sch. 2007]
• (LOGSPACE predicates: [Kristiansen 2005], [Bonfante 2006])

Supports our goal of finding a functional programming with
primitives for sublinear space programming.

.
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Language/Compiler Support

Not the same goal, though:

• not primarily interested in characterisations of LOGSPACE
or other complexity classes,

• but in what kinds of language constructs would make
expressing sublinear space algorithms easier.
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Functional Programming With Sublinear Space

1. Computation with external data
How should we work with data that does not fit into memory in a
functional programming language?

2. Deriving the functional language IntML

3. Programming in IntML
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Functional Programming With Sublinear Space

• So we are looking for PL constructs for for sublinear
space programming.

• Let us explore one possible choice of such constructs in a
FPL.

• Start with something very fundamental: How should
externally stored data be presented to the functional
programer?

• Problem not new: In complexity theory, people have
been studying sublinear space algorithms for a very long
time. What do they do?
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Sublinear Space Complexity

In complexity theory, one modifies the machine model to account
for computation with external data:

Turing Machines =⇒ Offline Turing Machines

Offline Turing Machines

read-only input tape

work tape

write-only output tape

Input and output tape belong to environment.
Only the space on the work tape(s) counts.

.
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Sublinear Space Complexity

Well, they change the machine model..
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Offline Turing Machines

Composition is implemented without storing intermediate result.

⇒ bidirectional data flow

.
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Offline Turing Machines

1. Run first machine

2. Run second

1. Run second machine until it
produces output character or
tries to read an input character.

2. If second machine tries to read
input character then start first
machine to compute this
character.

3. Goto 1

Bidirectional data flow seems to be the main point here that
allows one to work with externally stored data.
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Offline Turing Machines

An Offline Turing Machine can be seen as a convenient
abbreviation for a normal Turing Machine that

• obtains its input not in one piece but that may request it
character-by-character from the environment;

• gives its output as a stream of characters.

Formally, we may describe this as a computable function that
describes how the machine interacts with it environment:

Output character

Request for input character
Answer for input request

Request for output character

.
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Offline Turing Machines

This function describes how the machine interacts
with its environment.

Space at least logarithmic

So this is how they deal with sublinear space in CT.

• We do not want to work with TMs directly.

• Just like we do not work with TMs directly, we
do not want to work with OTMs directly.

For working with sublinear space in a FPL, we
should ask the question...
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Functional Programming with External Data

What relates to Offline Turing Machines in the same way that
functional programming languages relate to Turing Machines?

1. Understand the step from Turing Machines to Offline Turing
Machines in terms of the Int construction
[Joyal, Street & Verity 1996].

2. Make use of the generality of the Int construction and apply it
directly to a functional language.

3. Derive a functional language from the resulting structure.

.
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Functional Programming with External Data

• Could start from scratch and design a completely new
language for `?'

• We did something a little more systematic.
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Functional Programming with External Data

• Could start from scratch and design a completely new
language for `?'

• We did something a little more systematic.
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Int Construction

The Int construction can be seen as a general method for turning a
model of unidirectional data flow into one with bidirectional data
flow.

• GoI situation [Abramsky, Haghverdi, Scott]
• Related to game semantics, context semantics, read-back from
optimal reduction, …

Given a ‘computation model’ B, the Int construction yiels a model
Int(B) with bidirectional data flow that is built out of B.

.
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Int Construction
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Int Construction

Traced Monoidal category B
• Category B (here: sets and partial functions)

• Monoidal structure (+, 0) (here: disjoint union)

• Trace (here: while loop)
f : A + B −→ C + B
Tr(f) : A −→ C

Tr(f)(a) = Loop(inl(a))

Loop(x) =

{
c if f(x) = inl(c)
Loop(inr(b)) if f(x) = inr(b)

.
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Int Construction

For the purposes of the Int construction, a computational
model B consists of...

Simple example to keep in mind for this talk: Pfn



..

Category Int(B)

• Objects are pairs of B-objects X = (X−, X+)
• Morphism f : X → Y is a B-map f : X+ + Y− → Y+ + X−.

f

X

Y

f

X+

Y +

X−

Y −

Example: Offline Turing Machines appear as morphisms
(State× N, State× Σ) → (N, Σ).

• Composition

f

X

Y

g

Z

g ◦ f

X

Z

=

.
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Category Int(B)

Int(B) is now a place of bidirectional computation built from B

• Replace sets by pairs of sets.
I think of X− and X+ them as requests and answers.

• Morphisms: Message passing nodes with bidir. wires (if + coprod)
A token can be passed along an edge: (Token of type X+ can be
passed with the direction of a wire and a token of type X− in the
opposite direction)

• Message-passing nodes are implemented in B.

• OTMs

• With composition we can build message-passing networks which
behave as expected.

• OK, that's Int. What do we gain? Well-known abstract structure for
building such networks!
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Structure in Int(B)

Int(B) has well-known structure that allows us to construct
‘message passing networks’ easily.

• A map from f : A −→ B in B induces a map (0,A) −→ (0, B)
in Int(B).

f

A

B

0

0

This gives a full and faithful embedding.
• We shall also use [A] = (1,A), where 1 is a singleton.
The value in A is computed only after an explicit request.

A

B

1

1
.
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Structure in Int(B)

Perhaps not very exciting yet.
At least we don't lose anything by moving from B to Int(B).
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Structure in Int(B)

Int(B) has a monoidal structure⊗

(X⊗ Y)− = X− + Y− I = (0, 0)
(X⊗ Y)+ = X+ + Y+

f

X

Y

g

U

V

⊗ = f

X

Y

g

U

V

X ⊗ U

Y ⊗ V

.
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Structure in Int(B)

When a node splits, the token travels on either of the two
nodes.



..

Structure in Int(B)

Int(B) is compact closed

(X−, X+)∗ = (X+, X−)

X X∗
η X∗X

ε

Int(B) is monoidal closed with X ⊸ Y = X∗ ⊗ Y

A∗

M N =

M N

A∗ ⊗B

A∗

A

B

λx.M =

M

A∗ ⊗B

A

ε

η

.
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Structure in Int(B)
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Structure in Int(B)

Int(B) has B-object indexed tensors(⊗
A
X
)−

= A× X−
(⊗

A
X
)+

= A× X+

(given suitable structure in B, e.g. products)

Example
B sets with partial functions, (+, 0) coproduct, A finite⊗

A
X ∼= X⊗ · · · ⊗ X︸ ︷︷ ︸

|A| times

Useful morphism
f : I −→

⊗
A
[A]

given by f : A× 1 → A× Awith f(a, 〈〉) = 〈a, a〉.

.
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Structure in Int(B)

• memory analogy

• Previously, people (including myself ) have almost always
used only the case where A is N! But we don't want to
encode everything in natural numbers, if we don't have
to!

• We'll find the map

I −→
⊗

A
[A]

very useful.
In other contexts people had to do some work to get rid
of it, but here we actually really want it!



..

Int Construction and Space Complexity

The functions that represent Offline Turing Machines

(State× Σ) + N −→ (State× N) + Σ

appear in Int(Pfn) as morphisms of type⊗
State

(N ⊸ Σ) −→ (N ⊸ Σ),

where we write just N for (0, N) and Σ for (0, Σ).

The structure of Int(Pfn) is useful for working with OTMs.
• Composition:⊗

S

⊗
S′

(N ⊸ Σ)
N

S f−−→
⊗

S
(N ⊸ Σ)

g−→ (N ⊸ Σ)

• Input lookup is just (linear) function application.
• …

.
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Int Construction and Space Complexity

• Have now talked a lot about the Int construction and its structure.

• How does it help for functional programming with sublinear space?

• Remember: We wanted to understand the step from TM to OTM in
terms of the Int construction and then use this understanding to do
the same step starting with a FPL instead of TM.

• Think of TMs as computable partial functions, i.e. morphisms in
B = Pfn.

• OTM then appears as morphisms of that type

• This view is useful because of the structure!

⇒ Now we change the computational model to something more
intentional like a FPL and then the morphisms of that type should
have something to do with sublinear space computation.
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A Functional Language for Sublinear Space

1. Computation with external data

2. Deriving the functional language IntML

1. Start with a standard functional programming language.

2. Apply the Int construction to a termmodel B of this language.

3. Derive a functional language from the structure of Int(B). It
can be seen as a definitional extension of the initial language.

4. Identify programs with sublinear space usage.

3. Programming in IntML
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A Functional Language for Sublinear Space
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A Simple First Order Language

Finite Types
A, B ::= α | A + B | 1 | A× B

Ordering on all types

minA | succA(f) | eqA(f, f)

Explicit trace (with respect to +)

trace(c.f)(g)

(sufficient for now, could use tail recursion)

Standard call-by-value evaluation, constants unfolded on demand

Chosen for simplicity and to make analysis easy.
Richer languages are possible.

.
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A Simple First Order Language
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Examples

Example: Addition

x : α, y : α ` add(x, y) : α

With syntactic sugar for tail recursion:

add(x, y) =
if y = min then x else add(succ x, pred y)

With explicit trace:

add(x, y) =
(trace p. case p of

inl(z) -> inr(z)
| inr(z) -> let z be <x, y> in

if y = min then inl(x) else inr(<succ x, pred y>)
) <x,y>

.

. .
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Examples
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Applying the Int Construction
We apply the Int construction to a termmodel B of this simple
functional language.
We can use the structure in Int(B) to construct and manipulate
message passing networks

• whose nodes are given by terms of the simple language; and
• which are themselves implemented by terms in this language.

Z

X Y

corresponds to term of type
X+ + Y+ + Z− → Z+ + X− + Y−

⇒ Definitional extension of the original language.
.

. .
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Applying the Int Construction

We pretend that we are working with message passing
networks when we are really constructing (complicated)
terms.

Whole network is really implemented by a term

We now construct a language for working with such networks

• First idea perhaps: We just look at the structure of Int(B)
and derive an internal language.

• Not flexible enough -- networks should complement rest.

• We want to work with both B and Int(B).
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The Functional Language IntML

IntML extends the simple first order language with syntax for Int(B),
where B is the term model of the simple first order language.

IntML has two classes of terms and types:
• Working Class (for B)

A, B ::= α | A + B | 1 | A× B

Terms from the simple first order language + unbox
• Upper Class (for Int(B))

X, Y ::= [A] | X⊗ Y | A · X ⊸ Y

All computation is being done by working class terms. Upper class
terms correspond to morphisms in Int(B), which are implemented
by working class terms.

.
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by working class terms.
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IntML Type System — Working Class

Usual typing rules, e.g.

Σ ` f : A Σ ` g : B
Σ ` 〈f, g〉 : A× B

…

There is one additional rule for using upper class results in the
working class:

Σ | ` t : [A]
Σ ` unbox t : A

.

. .
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IntML Type System — Upper Class

The upper class type system identifies a useful part of Int(B).

Types

X, Y ::= [A] | X⊗ Y | A · X ⊸ Y

(A is a working class type)
In the syntax we write A · X for

⊗
A X.

Typing Sequents

Σ | x1 : A1 · X1, . . . , xn : An · Xn ` t : Y

(Σ is a working class context)
The restrictions on the appearance of

⊗
A are motivated by

Dual Light Affine Logic [Baillot & Terui 2003].

.

. .
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Intution: Variables in Σ are values in memory!
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IntML Type System — Upper Class

A sequent
Σ | x1 : A1 · X1, . . . , xn : An · Xn ` t : Y

denotes morphism⊗
Σ

(⊗
A1

X1 ⊗ · · · ⊗
⊗

An
Xn

)
−→

⊗
Σ
Y in Int(B).

⊗
Σ Y

⊗
Σ

⊗
An

Xn· · ·
⊗

Σ

⊗
A1

X1

t

.

. .
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A sequent
Σ | x1 : A1 · X1, . . . , xn : An · Xn ` t : Y

denotes morphism⊗
Σ
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⊗
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)
−→
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Σ
Y in Int(B).

⊗
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Upper Class Typing Rules

(Var)
Σ | Γ, x : A · X ` x : X

Σ | Γ, x : A · X ` s : Y
(LocWeak)

Σ | Γ, x : (B× A) · X ` s : Y

Σ | Γ, x : A · X ` s : X
(Congr) A ∼= B, e.g. 1 × A ∼= A

Σ | Γ, x : B · X ` s : X

Σ | Γ, x : A · X ` s : Y
(⊸-I)

Σ | Γ ` λx. s : A · X ⊸ Y

Σ | Γ ` s : A · X ⊸ Y Σ | Δ ` t : X
(⊸-E)

Σ | Γ, A · Δ ` s t : Y

(straightforward rules for⊗)

.

. .
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Upper Class Typing Rules

Σ | Γ ` s : X Σ | Δ, x : A · X, y : B · X ` t : Y
(Contr)

Σ | Δ, (A + B) · Γ ` copy s as x, y in t : Y

Σ ` f : A + B Σ, c : A | Γ ` s : X Σ, d : B | Γ ` t : X
(Case)

Σ | Γ ` case f of inl(c) ⇒ s | inr(d) ⇒ t : X

Σ ` f : A([ ]-I)
Σ | Γ ` [f] : [A]

Σ | Γ ` s : [A] Σ, c : A | Δ ` t : [B]
([ ]-E)

Σ | Γ, A · Δ ` let s be [c] in t : [B]

.

. .
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Σ | Γ ` [f] : [A]
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Upper Class Typing Rules

Rules for Box look innocent, but are actually very important!
They allow us to work with the big tensor.
Here we use the map

I −→
⊗

A
[A]
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Upper Class Typing — Examples

f = λx. λy. let x be [c] in let y be [d] in [add c d]
: [α] ⊸ α · [α] ⊸ [α]

g = λf. λx. let x be [c] in f [c] [c]
: α · ([α] ⊸ [α] ⊸ [β]) ⊸ [α] ⊸ [β]

h = λy. copy y as y1, y2 in
〈let y1 be [c] in [π1 c], let y2 be [c] in [π2 c]〉
: (γ + δ) · [α × β] ⊸ [α] ⊗ [β]

Terms do not contain type annotations.

Conjecture: Inference of most general types is possible.
(have an implementation for the type system without rule (Cong);
unification up to congruence is decidable).

.

. .
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Upper Class Typing — Examples

f = λx. λy. let x be [c] in let y be [d] in [add c d]
: 1 · [α] ⊸ (α×1) · [α] ⊸ [α]

represents a working-class term of type

Σ × (1×α + (α×1 × α + 1)) −→ Σ × (1×1 + (α×1 × 1 + α))

.
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Upper Class Typing — Examples

f = λx. λy. let x be [c] in let y be [d] in [add c d]
: 1 · [α] ⊸ (α×1) · [α] ⊸ [α]

represents a working-class term of type

Σ × (1×α + (α×1 × α + 1)) −→ Σ × (1×1 + (α×1 × 1 + α))

fun x167 -> let (trace fun x166 -> case x166 of inl(x0) -> let x0 be <x5, x0> in case x0 of inl(x4)
-> inr(inr(inr(inl(<x5, x4>)))) | inr(x4) -> inr(inr(inr(inr(inr(inr(inr(inl(<x5, x4>)))))))) |
inr(x165) -> case x165 of inl(x6) -> let x6 be <x11, x10> in inr(inr(inl(<x11, inl(x10)>))) |
inr(x164) -> case x164 of inl(x12) -> inl(x12) | inr(x163) -> case x163 of inl(x18) -> let x18 be
<x23, x18> in let x18 be <x21, x22> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x23, x22>))))
))))))) | inr(x162) -> case x162 of inl(x24) -> let x24 be <x29, x24> in let x24 be <x24, x28> in
let x24 be <x26, x27> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<<x29, x26>, <x27,
x28>>))))))))))))) | inr(x161) -> case x161 of inl(x30) -> let x30 be <x35, x34> in inr(inr(inr
(inr(inr(inr(inl(<x35, inl(x34)>))))))) | inr(x160) -> case x160 of inl(x36) -> let x36 be <x41,
x40> in inr(inr(inl(<x41, inr(x40)>))) | inr(x159) -> case x159 of inl(x42) -> let x42 be <x47,
x42> in case x42 of inl(x46) -> inr(inr(inr(inr(inl(<x47, x46>))))) | inr(x46) -> inr(inr(inr(
inr(inr(inr(inr(inr(inr(inl(<x47, x46>)))))))))) | inr(x158) -> case x158 of inl(x48) -> let x48
be <x53, x52> in inr(inr(inr(inr(inr(inr(inl(<x53, inr(x52)>))))))) | inr(x157) -> case x157 of
inl(x54) -> let x54 be <x59, x58> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x59, <>>
)))))))))))) | inr(x156) -> case x156 of inl(x60) -> let x60 be <x65, x64> in inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(<x65, <x64, <>>>)))
)))))))))))))))))))) | inr(x155) -> case x155 of inl(x66) -> let x66 be <x71, x70> in inr(inl(
<x71, <min(* 'a12 *), x70>>)) | inr(x154) -> case x154 of inl(x72) -> let x72 be <x77, x72> in
let x72 be <x75, x76> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(...

(second half of the term omitted) .

. .

Upper Class Typing — Examples

f = λx. λy. let x be [c] in let y be [d] in [add c d]
: 1 · [α] ⊸ (α×1) · [α] ⊸ [α]

represents a working-class term of type

Σ × (1×α + (α×1 × α + 1)) −→ Σ × (1×1 + (α×1 × 1 + α))

fun x167 -> let (trace fun x166 -> case x166 of inl(x0) -> let x0 be <x5, x0> in case x0 of inl(x4)
-> inr(inr(inr(inl(<x5, x4>)))) | inr(x4) -> inr(inr(inr(inr(inr(inr(inr(inl(<x5, x4>)))))))) |
inr(x165) -> case x165 of inl(x6) -> let x6 be <x11, x10> in inr(inr(inl(<x11, inl(x10)>))) |
inr(x164) -> case x164 of inl(x12) -> inl(x12) | inr(x163) -> case x163 of inl(x18) -> let x18 be
<x23, x18> in let x18 be <x21, x22> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x23, x22>))))
))))))) | inr(x162) -> case x162 of inl(x24) -> let x24 be <x29, x24> in let x24 be <x24, x28> in
let x24 be <x26, x27> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<<x29, x26>, <x27,
x28>>))))))))))))) | inr(x161) -> case x161 of inl(x30) -> let x30 be <x35, x34> in inr(inr(inr
(inr(inr(inr(inl(<x35, inl(x34)>))))))) | inr(x160) -> case x160 of inl(x36) -> let x36 be <x41,
x40> in inr(inr(inl(<x41, inr(x40)>))) | inr(x159) -> case x159 of inl(x42) -> let x42 be <x47,
x42> in case x42 of inl(x46) -> inr(inr(inr(inr(inl(<x47, x46>))))) | inr(x46) -> inr(inr(inr(
inr(inr(inr(inr(inr(inr(inl(<x47, x46>)))))))))) | inr(x158) -> case x158 of inl(x48) -> let x48
be <x53, x52> in inr(inr(inr(inr(inr(inr(inl(<x53, inr(x52)>))))))) | inr(x157) -> case x157 of
inl(x54) -> let x54 be <x59, x58> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x59, <>>
)))))))))))) | inr(x156) -> case x156 of inl(x60) -> let x60 be <x65, x64> in inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(<x65, <x64, <>>>)))
)))))))))))))))))))) | inr(x155) -> case x155 of inl(x66) -> let x66 be <x71, x70> in inr(inl(
<x71, <min(* 'a12 *), x70>>)) | inr(x154) -> case x154 of inl(x72) -> let x72 be <x77, x72> in
let x72 be <x75, x76> in inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(...

(second half of the term omitted)

.

.20
10

-0
1-

11

Functional Programming in Sublinear Space

Upper Class Typing — Examples



..

Upper Class Typing — Examples

f = λx. λy. let x be [c] in let y be [d] in [add c d]
: 1 · [α] ⊸ (α×1) · [α] ⊸ [α]

represents a working-class term of type

Σ × (1×α + (α×1 × α + 1)) −→ Σ × (1×1 + (α×1 × 1 + α))
<<>, inr(inr(<>))>

Environment

⊗

⊗

π_...

π

↓

↑

π

π_...

↑

[...]

Σ = 1
α = 1 + 1

.
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• Additional 1 ×− due to implementation.

• Where does this term come from? Constructions for the structure of
Int(B).

• Graph pictures were actually obtained by evaluating the term on the
previous slide!

• Explain let: Implemented by π :
⊗

A X⊗ [A] → X
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f = λx. λy. let x be [c] in let y be [d] in [add c d]
: 1 · [α] ⊸ (α×1) · [α] ⊸ [α]

represents a working-class term of type

Σ × (1×α + (α×1 × α + 1)) −→ Σ × (1×1 + (α×1 × 1 + α))
<<<<>, inr(<>)>, inl(<>)>, <>>

Environment

⊗

⊗

π_...

π
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π

π_...
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[...]

Σ = 1
α = 1 + 1
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Hacking

Have we captured all the structure of Int(B)?

No! Int(B) has a lot more structure!

Can we ever capture all the useful structure?
Let the programmer define the structure he needs himself!

Σ, c : X− ` g : X+

(Hack)
Σ | Γ ` hack(c.g) : X

hack(c.g)

X

[A]− = 1 [A]+ = A

(X⊗ Y)− = X− + Y− (X⊗ Y)+ = X+ + Y+

(A · X ⊸ Y)− = A× X+ + Y− (A · X ⊸ Y)+ = A× X− + Y+

Complexity results remain true in presence of (Hack).
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Hacking — loop

loop : α · (γ · [α] ⊸ [α + β]) ⊸ [α] ⊸ [β]

loop f x0 =

{
loop f [y] if f x0 is [inl(y)]
[z] if f x0 is [inr(z)]

loop = hack x. case x of
| inl(y) -> let y be <store, stepq> in

case stepq of
| inl(argq) -> let argq be <argstore, unit> in

inl(<store, inl(<argstore, store>)>)
| inr(contOrStop) -> case contOrStop of

| inl(cont) -> inl(<cont, inr(<>)>)
| inr(stop) -> inr(inr(stop))

| inr(z) -> case z of
| inl(basea) -> let basea be <junk, basea> in

inl(<basea, inr(<>)>)
| inr(initialq) -> inr(inl(<<>, <>>))

.
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There are equations for the upper class calculus,
which are soundly implemented by the
compilation to networks.
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Functional Programming in Sublinear Space

1. Computation with external data

2. Deriving the functional language IntML

3. Programming in IntML
How easy is it to write sublinear space algorithms in IntML?
Consider two known LOGSPACE algorithms:

• Checking acyclicity in undirected graphs
• Recursion by computational amnesia

.
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Graph Algorithms

Represent graphs by upper class types of the form

G(α) = ([α] → [2]) ⊗ ([α × α] → [2]) .

• Carrier set: α
• Set of nodes: [α] → [2]
• Edge relation: [α × α] → [2]

We often omit the index type, writing just X → Y for A · X ⊸ Y.

.
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Graph Algorithms

Represent graphs by upper class types of the form

G(α) = ([α] → [2]) ⊗ ([α × α] → [2]) .

Suppose we write an upper class term containing only the type
variable α. Its translation to a working class term then has a
working-class type containing only the variable α.

• For any working class type P(α) there are constants k and l
such that, for any closed type Awith n values, the type P(A) has
at most nk + l values.

• If A is a closed type with n values then G(A) can stand for
graphs of size n.

⇒With a binary encoding, tokens can be stored in logarithmic
space.
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LOGSPACE Algorithm for
Checking Acyclicity of Undirected Graphs

Check that any walk according to the right-hand-rule returns to the
node it started from through the edge over which it left.
[Cook & McKenzie 1980]
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Walk following the Right-Hand-Rule

checkpathM,α : G(α) → [α] → [α] → [2]

checkpathM,α = λgraph. λie.

copy graph as graph1, graph2 in
let ie be [e] in
if2 (edge graph1 [e])

(loop (λw. let w be [p] in
if2 [dst p = src e]

(if2 [src p = dst e] [return(true)] [return(false)])
(let nextEdge graph2 [p] be [d] in

[continue(〈dst p, d〉)])
) [e]

[true]

Using abbreviations like src e = π1 e and return x = inr(x) and
defined functions like if2.

.
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Checking Acyclicity

iteratorα : ([α] → [β]) → ([β] → [β] → [β]) → [β]
iteratorα = λx. λy. copy x as x1, x2 in

loop (λw. let w be [e] in
if2 [π2 e = max] [return(π1 e)]

(let y (x1 [succ(π2 e)]) [π1 e] be [f] in
[continue〈f, (succ(π2 e))〉]))

(let x2 [min] be [f] in [〈f,min〉])

checkcycleM,α : G(α) → [2]

checkcycleM,α = λgraph.

copy graph as graph1, graph2 in
iteratorα×α (λie. let ie be [e] in

if2 (edge graph1 [e])
(checkpathM,α graph2 [e])

[true])
and .

. .
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Checking Acyclicity

These programs were not hard to write (essentially in one day, type
system did not get in the way).
I show them to give you an impression what things look like.



..

Checking Acyclicity

The type of checkcycleM,α may be expanded to

A · (([α] ⊸ [2]) ⊗ ([α × α] ⊸ [2])) ⊸ [2],

where A is the following type:

((2×(α×α)×(2×(α×α)×(2×α1×(α2×α3)))+1×α4)×α5×(α×
α×(α6×(α7×α8×α9×α10)))+(2×(α×α)×(2×(α×α)×(2×
α1×(α2×α3)))+1×α4)×α5×(α×α×(2×α11×((α×α×(α12×
(α13×α14×α15×α16))+α×α×(2×α17×(α×α×(α×α×(2×α21×
(α×(α×(α22×(α23×α24×α25×α26)))))))))×α18×α19))))×α20

.
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Checking Acyclicity
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Checking Acyclicity
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Checking Acyclicity — Space Usage

An upper bound for the space needed to evalueate checkcycleM,α

can be read off from the network it compiles to.
To answer requests, we need to store

• the network that checkcycleM,α compiles to;
• one token on this graph and its position.

Each edge of the network is annotated with a type A(α), so the size
of a token can be bounded statically by looking at all the types that
appear in the network.

• Given a graph of size n, we choose for α the type 2 × · · · × 2
(log n+ 1 times), which is large enough to represent the graph.

• The size of values of A(α) is at most k · log n + l.

⇒ Token uses logarithmic space.

⇒ Since network size is a constant, IntML-evaluation of
checkcycleM,α therefore remains in LOGSPACE.

.

. .
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• We have now seen an example of how we can write a program that
accesses a large graph that is stored externally.

• The example shows that we can do this with reasonable overhead
(both programming and space -- dont know about time).

• One of our aims was to be able to work with large data as if it were
small.

⇒ Want to write functions from graphs to graphs in IntML,
i.e. higher-order functions to manipulate them.

• We do this in the next example, but we use words instead of graphs
(for a change).



..

A Functional Language for Sublinear Space

1. Computation with external data

2. Deriving the functional language IntML

3. Programming in IntML
How easy is it to write sublinear space algorithms in IntML?
Consider two known LOGSPACE algorithms:

• Checking acyclicity in undirected graphs
• Recursion by computational amnesia

.
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Working with Binary Strings

Represent binary strings by the upper class type

S(α) = [α] → [3],

where the type 3 contains elements for 0, 1 and a blank symbol.

Goal:
Implement (higher-order) combinators on strings that allow us to
work with large strings as if we had enough memory to store them.

.

. .
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Simple Examples

Empty String
zero : [α] → [3]

zero := λw. [blank]

Appending ‘0’

succ0 : ([α] → [3]) → ([α] → [3])

succ0 := λw. λi. let i be [c] in
case (c = min) of inl(true) ⇒ [zero]

| inr(false) ⇒ w [pred c]

Case distinction

if : ([α] → [3]) → ([α] → [3]) → ([α] → [3]) → ([α] → [3])

if := λw. λw0. λw1. λi. let w [min] be [c] in
case c of inl(blank) ⇒ w0 i

| inr(zo) ⇒ case zo of inl(zero) ⇒ w0 i
| inr(one) ⇒ w1 i

.

. .
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Simple Examples

Such combinators can be used for working with large words, e.g.

λw. λv. succ0 (if w (succ0 zero) v)

So far, the combinators are very simple.

Can interesting combinators can be implemented in this way?

.
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A nontrivial set of such combinators was studied by Moeller
Neergaard



..

Function Algebras
BC− [Murawski, Ong] and BC−ε [Møller-Neergaard]

Variants of primitive recursion on binary words that can be
evaluated in LOGSPACE.

• Example basic functions:

succ0(: y) = y0

if(: y, t, f) =

{
t if y ends with 1
f otherwise

• Closed under composition
• Closed under (course-of-value) recursion on notation:
f = saferec(g, h0, h1, d0, d1) satisfies

f(~x, ε : ~y) = g(~x : ~y)
f(~x, xi : ~y) = hi(~x, x : f(~x, x>>|di(~x, x :)| : ~y))

.

. .

Function Algebras
BC− [Murawski, Ong] and BC−ε [Møller-Neergaard]

Variants of primitive recursion on binary words that can be
evaluated in LOGSPACE.

• Example basic functions:

succ0(: y) = y0

if(: y, t, f) =

{
t if y ends with 1
f otherwise

• Closed under composition
• Closed under (course-of-value) recursion on notation:
f = saferec(g, h0, h1, d0, d1) satisfies

f(~x, ε : ~y) = g(~x : ~y)
f(~x, xi : ~y) = hi(~x, x : f(~x, x>>|di(~x, x :)| : ~y))

.

.20
10

-0
1-

11

Functional Programming in Sublinear Space

Function Algebras BC− [Murawski, Ong] and BC−ε
[Møller-Neergaard]
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LOGSPACE evaluation of BC− and BC−ε

Møller-Neergaard proves LOGSPACE-soundness by implementing
BC−ε in SML/NJ:

• Binary words are modelled as functions of type (N → 3).
• Function f(~x;~y) is implemented as SML-function of type

(N → 3) → · · · → (N → 3) → (N → 3) .

• Recursion on notation by computational amnesia
[Ong, Mairson]

.

. .
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Implementing Recursion by Computational Amnesia

g : (N → 3)
h0 : (N → 3) → (N → 3)
h1 : (N → 3) → (N → 3)

f = saferec(h0, h1, g) : (N → 3)

f(01011) = h1(h1(h0(h1(h0(g)))))

• Whenever hi applies its argument, forget the call stack and just
continue.

• When some hi or g returns a value, we may not know what to
do with it — we have forgotten the call stack.

⇒ Remember the returned value (one bit) and its depth and
restart the computation.

.
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[Møller-Neergaard 2004] exception Restartn
val NORESULT = { depth = ~1, res = NONE, bt=~1 }

fun saferec (g : program-(m − 1)-n)
(h0 : program-m-1) (d0 : program-m-0)

(h1 : program-m-1) (d1 : program-m-0)

(x1 : input) . . . (xm : input)

(y1 : input) . . . (yn : input) (bt : int) =

let val result = ref NORESULT

val goal = ref ({ bt=bt, depth=0 })
fun loop1 body = if body () then () else loop1 body

fun loop2 body = if body () then () else loop2 body

fun findLength (z : input) =

let fun search i = if z i <> NONE then search (i + 1) else i

in

search 0

end

fun x’ (bt : int) = x1 (1 + bt + #depth (!goal))

fun recursiveCall (d : program-m-0) (bt : int) =

let val delta = 1 + findLength (d x’ x2 . . . xm)

in

if #depth (!goal) + delta = #depth (!result)

andalso #bt (!result) = bt

then #res (!result)

else

goal := { bt=bt, depth = #depth (!goal) + delta };
raise Restartn

end

in

( loop1 (fn () => (* Loops until we have the bit at depth 0 *)

( goal := { bt=bt, depth=0 };
loop2 (fn () => (* Loops while the computation is restarted *)

let val res =

case x1 (#depth (!goal)) of

NONE => g x2 . . . xm y1 . . . yn (#bt (!goal))

| SOME b =>

let val (h, d) = if b=0 then (h0,d0) else (h1,d1)

in

h x’ x2 . . . xm (recursiveCall d) (#bt (!goal))

end

in ( result := { depth = #depth (!goal),

res = res,

bt = #bt (!goal) };
true )

end handle Restartn => false

0 = #depth (!result) ));

#res (!result))

end

Fig. 4. Translations of safe affine recursion

.

. .

[Møller-Neergaard 2004] exception Restartn
val NORESULT = { depth = ~1, res = NONE, bt=~1 }

fun saferec (g : program-(m − 1)-n)
(h0 : program-m-1) (d0 : program-m-0)

(h1 : program-m-1) (d1 : program-m-0)

(x1 : input) . . . (xm : input)

(y1 : input) . . . (yn : input) (bt : int) =

let val result = ref NORESULT

val goal = ref ({ bt=bt, depth=0 })
fun loop1 body = if body () then () else loop1 body

fun loop2 body = if body () then () else loop2 body

fun findLength (z : input) =

let fun search i = if z i <> NONE then search (i + 1) else i

in

search 0

end

fun x’ (bt : int) = x1 (1 + bt + #depth (!goal))

fun recursiveCall (d : program-m-0) (bt : int) =

let val delta = 1 + findLength (d x’ x2 . . . xm)

in

if #depth (!goal) + delta = #depth (!result)

andalso #bt (!result) = bt

then #res (!result)

else

goal := { bt=bt, depth = #depth (!goal) + delta };
raise Restartn

end

in

( loop1 (fn () => (* Loops until we have the bit at depth 0 *)

( goal := { bt=bt, depth=0 };
loop2 (fn () => (* Loops while the computation is restarted *)

let val res =

case x1 (#depth (!goal)) of

NONE => g x2 . . . xm y1 . . . yn (#bt (!goal))

| SOME b =>

let val (h, d) = if b=0 then (h0,d0) else (h1,d1)

in

h x’ x2 . . . xm (recursiveCall d) (#bt (!goal))

end

in ( result := { depth = #depth (!goal),

res = res,

bt = #bt (!goal) };
true )

end handle Restartn => false

0 = #depth (!result) ));

#res (!result))

end

Fig. 4. Translations of safe affine recursion

.
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..

Control Flow

callcc : (γ · ([α] ⊸ β) ⊸ [α]) ⊸ [α]

Implemented using hack:

(γ × (α + β−) + α) + 1 −→ (γ × (1 + β+) + 1) + α

inr(∗) 7→ inl(inr(∗))
inl(inr(a)) 7→ inr(a)

inl(inl(g, inr(x))) 7→ inl(inl(g, inl(∗)))
inl(inl(g, inl(a))) 7→ inr(a)

.

. .

Control Flow

callcc : (γ · ([α] ⊸ β) ⊸ [α]) ⊸ [α]

Implemented using hack:

(γ × (α + β−) + α) + 1 −→ (γ × (1 + β+) + 1) + α

inr(∗) 7→ inl(inr(∗))
inl(inr(a)) 7→ inr(a)

inl(inl(g, inr(x))) 7→ inl(inl(g, inl(∗)))
inl(inl(g, inl(a))) 7→ inr(a)

.
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Control Flow

Show program!



..

SML IntML

.

. .

SML IntML

.
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Note: Equations and Correctness!
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Example — saferec

parity = λw. saferec zero h0 h1 w

h0 = λx. λv. if v (succ1 zero) (succ0 zero)
h1 = λx. λv. if v (succ0 zero) (succ1 zero)
f = λw. parity (succ0 succ1 w)

.

. .

Example — saferec

parity = λw. saferec zero h0 h1 w

h0 = λx. λv. if v (succ1 zero) (succ0 zero)
h1 = λx. λv. if v (succ0 zero) (succ1 zero)
f = λw. parity (succ0 succ1 w)

.
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String Diagram for parity
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..

Working Class Term for parity

let (trace x9472. case x9472 of inl(x0) -> let x0 be <x5, x4> in inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
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inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
...
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x5, inr(x4)>)))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
...

…5 Megabyte more
(about 150 Kb if injections were represented efficiently)

.

. .

Working Class Term for parity

let (trace x9472. case x9472 of inl(x0) -> let x0 be <x5, x4> in inr(inr(inr(inr(inr(
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inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(
inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inr(inl(<x5, inr(x4)>)))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
...

…5 Megabyte more
(about 150 Kb if injections were represented efficiently)
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..

Implementing Parity

The term parity is just an example to test saferec.

The standard algorithm for parity can be implemented easily:
parity =U fun x : ['a] --o [1+(1+1)] ->

let
loop (fun pos_parityU : ['a * (1+1)]->

let pos_parityU be [pos_parity] in
let x [pi1 pos_parity] be [x_pos] in
case x_pos of

inl(mblank) -> [inr(pos_parity)]
| inr(char) ->

if (pi1 pos_parity) = max then
[inr(<max, xor char (pi2 pos_parity)>)]

else
[inl(<succ (pi1 pos_parity), xor char (pi2 pos_parity)>)]

) [<min, false>]
be [pos_parity] in [pi2 pos_parity];

.

. .
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..

LOGSPACE Soundness and Completeness

Any upper class term

t : A·(B·[α] ⊸ [3]) ⊸ (C·[P(α)] ⊸ [3])

represents a LOGSPACE function on binary words and any such
function can be represented in this way.

If we consider α as a natural number then t induces a function

ϕα : {0, 1}≤α −→ {0, 1}≤P(α).

as follows:
• A wordw ∈ {0, 1}≤α can be represented as a function in
〈w〉 : B·[α] ⊸ [3] by a big case distinction.

• Then ϕα(w) is the word that (t 〈w〉) represents.

The working-class term for t gives a LOGSPACE algorithm for the
function

w 7−→ ϕ|w|(w) : {0, 1}∗ −→ {0, 1}∗.
.

. .
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The converse is also true.



..

LOGSPACE Soundness and Completeness

State of a LOGSPACE Turing Machine can be represented as a
working class value of type S(α).

Step function

input : [α] ⊸ [3] ` step : [S(α)] ⊸ [S(α) + S(α)]

step = λx. let x be [s] in
let input [inputpos(s)] be [i] in
[…working class term for transition function …]

Turing Machine

M : A·(B·[α] ⊸ [3]) ⊸ (C·[P(α)] ⊸ [3])

M = λinput. λoutchar. loop step init

.

. .

LOGSPACE Soundness and Completeness

State of a LOGSPACE Turing Machine can be represented as a
working class value of type S(α).

Step function

input : [α] ⊸ [3] ` step : [S(α)] ⊸ [S(α) + S(α)]

step = λx. let x be [s] in
let input [inputpos(s)] be [i] in
[…working class term for transition function …]

Turing Machine

M : A·(B·[α] ⊸ [3]) ⊸ (C·[P(α)] ⊸ [3])

M = λinput. λoutchar. loop step init

.

.20
10

-0
1-

11

Functional Programming in Sublinear Space

LOGSPACE Soundness and Completeness



..

Conclusion

Space bounded computation has interesting structure,
that we have only just begun to explore.

The Int construction seems to be a good first step
for capturing that structure precisely.

Further Work
• Stronger working class calculi: Allowing (certain) function
spaces in the working class should allow us to work with
polylogarithmic space.

• Completeness: Can we get completeness by something less
trivial than hack?

.
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