
Space-efficient Computation by Interaction
A Type System for Logarithmic Space

Ulrich Schöpp

Ludwig-Maximilians-Universität München
Oettingenstraße 67, D-80538 München, Germany

schoepp@tcs.ifi.lmu.de

Abstract. We introduce a typed functional programming language for logarith-
mic space. Its type system is an annotated subsystem of Hofmann’s polytime
LFPL. To guide the design of the programming language and to enable the proof
of LOGSPACE-soundness, we introduce a realisability model over a variant of the
Geometry of Interaction. This realisability model, which takes inspiration from
Møller-Neergaard and Mairson’s work on BC−

ε , provides a general framework for
modelling space-restricted computation.

1 Introduction

Many important complexity classes can be captured by programming languages and
logics [11]. Such implicit characterisations of complexity classes are desirable for many
reasons. For instance, one may want to avoid technical details in the construction and
manipulation of Turing Machines, or one may want to get insight into which kinds of
high-level programming principles are available in certain complexity classes. It has
also become apparent that implicit characterisation of complexity classes can help in
devising methods for analysing the resource-consumption of programs and in finding
compilation strategies that guarantee certain resource bounds [19].

In this paper we address the question of how to design a functional programming
language that captures LOGSPACE. Existing functional characterisations of LOGSPACE,
such as [18, 17, 4, 13, 14], are all minimal by design. Although minimal languages are
well-suited for theoretical study, they tend not to be very convenient for writing pro-
grams in. Here we take the first steps towards extending the ideas in loc. cit. to a less
minimal programming language for LOGSPACE. One of the main issues in carrying out
such an extension lies in the manageability of the computation model. While for the
small languages in loc. cit. it is possible to show LOGSPACE-soundness by considering
the whole language, this becomes increasingly difficult the more constructs are added
to the programming language. Hence, an important goal in the design of a language for
LOGSPACE is to capture its compilation in a modular, compositional way.

1.1 Modelling Space-efficient Computation by Interaction
In this paper we give a compositional account of space-efficient computation, which
is based on modelling computation by interaction. Our approach is motivated by the
LOGSPACE-evaluation of Møller-Neergaard and Mairson’s function algebra BC−

ε [17].
The evaluation of BC−

ε may be thought of as a question/answer dialogue, where a ques-
tion to a natural number n is a number i, which represents the number of the bit to be

computed, and an answer is the value of the bit at position i in the binary representation
of n. Importantly, this approach admits a space-efficient implementation of recursion.
Suppose h : N → N is a function we want to iterate k times. In general this will not
be possible in LOGSPACE, as we cannot store intermediate results. However, it can be
done if h has the special property that to compute one bit of its output only one bit of
its input is needed. Suppose we want to compute bit i of hk(x). By the special property
of h, it is enough to know at most one bit of hd(x) for each d ≤ k. Suppose we already
know the right bit of hd(x) for some d < k. To compute the bit of hd+1(x), we begin
by asking hk(x) for bit i. This will result in a question for some bit of hk−1(x), then a
question for some bit of hk−2(x), and so on until we reach hd+1(x). Finally, hd+1(x)
will ask for one bit of hd(x), the value of which we already know. By the special prop-
erty of h, we can thus compute the required bit of hd+1(x). By iteration of this process,
the bits of hk(x) can be computed, assuming we can compute the bits of x. Moreover,
this process of computing the bits of hk(x) can be implemented by storing only one
bit of some hd(x), its recursion depth d, the initial question i and the current ques-
tion. Under suitable assumptions, such as that k is polynomial in the size of the inputs,
such an implementation will be in LOGSPACE.

In this paper we introduce a model for LOGSPACE-computation in which such an
implementation of recursion is available. Our approach is based on modelling compu-
tation by question/answer-interaction. Such models have been studied extensively in
the context of game semantics. We draw on this work, but since we are interested not
just in modelling dialogues but also in effectively computing answers to questions, we
are lead to considering the particular case of a Geometry of Interaction (GoI) situation,
see [2, 8] for a general description and [3] for a the connection to game semantics. In
Sect. 3 we build a model on the basis of a GoI situation. By building on this well-studied
structure, we can hope to benefit from existing work, such as that on the connections
to abstract machines [6] or to machine code generation [16], although we have yet to
explore the connections.

As an example of the kind of programming language that can be derived from the
model, we introduce LogFPL, a simple functional language for LOGSPACE.

2 A Type System for Logarithmic Space

The type system for LogFPL is an annotated subsystem of LFPL [9]. In LogFPL all
variables are annotated with elements of Z:={1, ·,∞}×N. The intended meaning of
the annotations is that we may send arbitrarily many questions to each variable marked
with ∞, that we may send at most one question to each variable marked with ·, and that
we may send at most one question to all the variables marked with 1. The second com-
ponent of the annotations specifies how many memory locations we may use when ask-
ing a question. We define an ordering on Z by letting 1 < ·< ∞ and 〈z, i〉 ≤ 〈z′, i′〉 ⇐⇒
(z ≤ z′)∧ (i ≤ i′). We define an addition on Z by 〈m, i〉+ 〈m′, i′〉= 〈max(m,m′), i+ i′〉.

A context Γ is a finite set of variable declarations x
z
: A, where z ∈ Z, subject to the

usual convention that each variable is declared at most once. For z ∈ Z, we write !zΓ for
the context obtained from Γ by replacing each declaration x

u
: A with x

u+z
: A. We write

short !Γ for !〈1,1〉Γ. We write Γ ≥ z if u ≥ z holds for all x
u
: A in Γ.

Small types AS ::= I | ♦ | B | SN | AS ∗AS

Types A ::= AS | L(AS) | A×A | A⊗1 A | A
·,i
−(A | A

∞,i
−(A

Terms M ::= x | c | ∗ | λx.M | M M | M⊗1M | let M be x⊗1x in M

| M∗M | let M be x∗x in M | 〈M,M〉 | π1(M) | π2(M)

The small types are the unit type I, the resource type ♦, as known from LFPL [9], the
type of booleans B, the type of small numbers SN, and the type A∗B of pairs of small
types. Small types have the property that their elements can be stored in memory. The
type SN, for example, contains natural numbers that are no larger than the size of the
input, as measured by the number of ♦s. Using binary encoding, such numbers can be
stored in memory. Small types are such that a single question suffices to get the whole
value of an element. In contrast, one question to a list, for example, is a question to one
of its elements. Thus, SN differs from the type L(I) of lists with unit-type elements.

The types are built starting from the small types and from lists L(A) over small
types. The function space −(has an annotation that indicates how many questions a
function needs to ask of its argument in order to answer a query to its result. The second
component of the annotations specifies how much data a function needs to store along

with a question. We often write −(for
·,i
−(and

∞

−(for
∞,i
−(when i is not important. The

type A⊗1 B consists of pairs x⊗1y, which we may use by asking one question either of
x or of y. For instance, the type of the constant cons below expresses that one question
to the list cons(d,a,r) can be answered by asking one question of either d, a or r.

We have the following constants for booleans, lists and small numbers:

Booleans tt,ff : B caseB : B
∞,k(A)
−−−((A×A)

·,0
−(A

Lists nil : L(A) hdtl : L(A)
·,1
−(♦⊗1 A⊗1 L(A)

cons : ♦⊗1 A⊗1 L(A)
·,1
−(L(A) empty : L(A)

·,0
−(B

Small numbers zero : SN succ : ♦
·,0
−(SN

·,0
−(SN

caseSN : SN
∞,1+k(A)
−−−−−((A× (♦

·,i
−(SN

·,i
−(A))

·,1
−(A

The number k(A) is defined in Fig 2. We note that hdtl represents a partial function

undefined for nil. Furthermore, we have a constant discard : A
·,0
−(I for each type A built

without (, and a constant dupi : (A
·,i
−(B)

·,k(A)
−−(A

·,0
−((B∗A) for each small type A.

The typing rules appear in Figs. 1–3. The rules for small types are based on the fact
that for small types we can get the whole value of an element with a single question.
Rule (∞-·), for instance, expresses that instead of asking a small value many times, we
may ask just one question, store the result and answer the many questions from memory.

2.1 Soundness and Completeness
Writing ‖M‖ for the evident functional interpretation of a term M, we have:

Proposition 1 (Soundness). For any judgement ` M : L(I)
∞,i
−(L(B)

∞,i
−(L(B), there

is a LOGSPACE-algorithm e, such that, for all x ∈ L(I) and all y ∈ L(B), if ‖M‖(x,y)
is defined then e applied to inputs x and y returns ‖M‖(x,y).
We construct the algorithm e in Sect. 3 by construction of a model.

A′ ≤ A B ≤ B′ u ≤ v

(A
u
−(B)≤ (A′

v
−(B′)

A ≤ A′ B ≤ B′

(A⊗1 B)≤ (A′⊗1 B′)

Fig. 1. Subtyping relation

(AXIOM)
x

z
: A ` x : A

c : A(CONST)
` c : A

Γ ` M : A A ≤ B
(SUB)

Γ ` M : B

(I-I)
` ∗ : I

Γ ` M : I ∆ ` N : A(I-E)
Γ, ∆ ` let M be ∗ in N : A

Γ, x
z
: A ` M : B

((-I) z ≥ 〈·,0〉
Γ ` λx.M : A

z
−(B

Γ ` M : A
z
−(B ∆ ` N : A((-E)

Γ, !z∆ ` M N : B

Γ ` M : A ∆ ` N : B(⊗1-I)
Γ, ∆ ` M⊗1N : A⊗1 B

Γ ` M : A⊗1 B ∆, x
〈1,i〉

: A, y
〈1,i〉

: B ` N : C
(⊗1-E)

∆, !〈1,i〉Γ ` let M be x⊗1y in N : C

Γ ` M : A Γ ` N : B(×-I)
!〈∞,1〉Γ ` 〈M,N〉 : A×B

Γ ` M : A×B(×-E1)
Γ ` π1(M) : A

Γ ` M : A×B(×-E2)
Γ ` π2(M) : B

Recursion types R ::= AS | L(B) | R⊗1 R

Γ ` g : B ` f : (B
·, j
−(Bk)

∞,i
−(♦

·,i
−(A

∞,i
−(B

·,i
−(B ∆ ` d : B

·, j
−(Bk

(REC-L) B ∈ R
Γ, !〈∞,s(i,B)〉∆ ` recL(A) g f d : L(A)

∞,s(i,B)
−−−−(B

Γ ` g : B ` f : (B
·, j
−(Bk)

∞,i
−(♦

·,i
−(B

·,i
−(B ∆ ` d : B

·, j
−(Bk

(REC-SN) B ∈ R
Γ, !〈∞,s(i,B)〉∆ ` recSN g f d : SN

·,s(i,B)
−−−(B

Here, s(i,A) = i + 4 + 7 · k(A), where k(A) = 1 for A ∈ {I,♦,B,SN}, k(L(A)) = 2 + k(A) and

k(A∗B) = k(A×B) = k(A⊗1 B) = k(A
z
−(B) = 1+ k(A)+ k(B). The definition of k(A) is such

that any type A is k(A)-encodable, see Def. 6.

Fig. 2. General typing rules

In the following rules, A, B and C must be small types.

Γ ` M : A ∆ ` N : B(∗-I) Γ ≥ 〈·,0〉∨∆ ≥ 〈·,0〉
!k(B)Γ, !k(A)∆ ` M∗N : A∗B

Γ ` M : A∗B ∆, x
〈·,i〉
: A, y

〈·,i〉
: B ` N : C

(∗-E)
!k(A∗B)∆, !〈·,i+k(C)〉Γ ` let M be x∗y in N : C

∆, x
〈∞,i〉

: A ` M : B
(∞-·)

!k(A)∆, x
〈·,i+k(B)〉

: A ` M : B

Fig. 3. Special rules for small types

First we sketch how LOGSPACE-predicates can be represented in LogFPL. Assume a
LOGSPACE Turing Machine over a binary alphabet. By a suitable encoding of the input,
we can assume that it never moves its input head beyond the end of the input.

We encode the computation of the Turing Machine. Its input tape is given as a
binary string, i.e. as a list in L(B). We represent the position of the input head by a
value in SN. Access to the input tape is given by a zipper-like function focus of type
SN (L(B) (SN⊗1 L(B)⊗1 L(B), with the following meaning:

focus i 〈x0, . . . ,xk〉= i⊗1〈xi−1, . . . ,x0〉⊗1〈xi, . . . ,xk〉 0 ≤ i ≤ k

The function focus is defined as λl.(recSN base step) (omitting d for brevity) with:
l : L(B) ` base:=zero⊗1nil⊗1l : SN⊗1 L(B)⊗1 L(B)

` step:=
λd.λr. let r be n⊗1h⊗1t in

let (hdtl t) be d′⊗1a⊗1t ′ in (succ d n)⊗1(cons d′ a h)⊗1t ′

: ♦ (SN⊗1 L(B)⊗1 L(B) (SN⊗1 L(B)⊗1 L(B)
To represent the work tape we use small numbers SN, since the work tape has only
logarithmic size and since SN is much more flexible than lists. To encode the transitions
of the TM, we use a number of helper functions. We encode ‘bounded small numbers’ by
pairs in SNB:=SN∗SN, where the first component represents the value of the number
and the second component contains memory (in the form of ♦) that may be used for
increasing the number. For instance, the incrementation function maps m∗zero : SNB
to m∗zero and m∗succ(d,n) to succ(d,m)∗n. Using the rules for small types, we can
represent the evident functions null : SN (SNB, inc : SNB (SNB, dec : SNB (SNB,
double : SNB (SNB, half : SNB (SNB and even : SNB (B∗SNB.

We encode the state of a Turing Machine by a 4-tuple l∗r∗i∗s in SNB∗SNB∗SNB∗Bk,
where l and r represent the parts of the work tape left and right from the work head,
i represents the position of the input head and s represents the state of the machine. We
abbreviate SNB∗SNB∗SNB∗Bk by S. It should be clear how to use the above helper func-
tions for implementing the basic operations of a Turing Machine. For instance, moving
the head on the work tape to the right is given by mapping a tuple l∗r∗i∗s to the value
(let even(r) be e∗r in (caseB e 〈double(l)∗half (r)∗i∗s, inc(double(l))∗half (r)∗i∗s〉)).
If, in addition to a 4-tuple in S, we have a function d : SN (B, such that d(n) is the
n-th character of the input tape, then, using dup, we can thus implement the transition
function of the Turing Machine. Hence, we can give the transition function the type
h : (SN (B)

∞

−(S −(S. Let g : S be the initial state of the machine. Since, using focus,
we can define an access function t : L(B) ` d : SN (B, we can model the computation
of the machine by g : S, t

∞
: L(B) ` recSN g h d : SN (S. Now, in order to construct

the initial state g as well as an upper bound on the computation length, we need a poly-
nomial number of ♦s. We obtain these from a given list L(I), which we split in four
numbers in SN of equal size. Thus, we obtain a term s

∞
: L(I), t

∞
: L(B) ` m : S, which,

if s is large enough, computes the final state of the Turing Machine for input t.

Proposition 2 (Completeness). Each LOGSPACE-predicate A ⊆ L(B) can be repre-

sented by a term M : L(I)
∞,i
−(L(B)

∞,i
−(B in the following sense. There exist natural

numbers n and m, such that, for each a ∈ L(B) and each list s ∈ L(I) that is longer
than |a|n +m, we have ‖M‖(a,s) = tt if a ∈ A and ‖M‖(a,s) = ff if a /∈ A.

3 Modelling Space-efficient Computation by Interaction

We compile LogFPL to LOGSPACE-algorithms by interpreting it in an instance of the
Geometry of Interaction situation [2]. We use an instance of the GoI situation in which
questions can be answered in linear space. This is motivated by the fact that questions
will typically be of logarithmic size (think of the bit-addresses of an input number), so
that to remain in LOGSPACE we can allow linear space in the size of the questions.

3.1 Linear non-size-increasing functions

The underlying computational model is that of non-size-increasing linear space func-
tions. The restriction to non-size-increasing functions is needed for composition in G ,
defined below, to remain in linear space. To fix the computation model, we work with
multi-tape Turing Machines over some alphabet Σ. The machines take their input on
one designated tape, where they also write the output.

The objects of L are triples (X ,c, l), where X is a underlying set, c : X → Σ∗ is a
coding function and l : X → N is an abstract length measure. An object must be so that
there exist constants m,n ∈ N such that ∀x ∈ X .m · l(x)+ n ≤ |c(x)| holds, i.e. the ab-
stract length measure underestimates the actual size at most linearly. The morphisms
from (X ,cX , lX) to (Y,cY , lY) are the partial functions f : X → Y with the property
∀x ∈ X . f (x) ↓=⇒ lY (f (x))≤ lX (x), for which in addition there exists a linear space
algorithm e satisfying ∀x ∈ X . f (x) ↓=⇒ e(cX (x)) = cY (f (x)).

The category L supports a number of data type constructions, much in the style of
LFPL [9]. We use the following constructions, of which we spell out only the underlying
sets and the length functions. The disjoint union A + B of the underlying sets of A
and B becomes an object with lA+B(inl(a)) = lA(a) and lA+B(inr(b)) = lB(b). The object
A⊗B has as underlying set the set of pairs of elements of A and B with length function
lA⊗B(〈a,b〉) = lA(a)+ lB(b). The evident projections π1 : A⊗B→ A and π2 : A⊗B→ B
are morphisms of L . We also have booleans B = {ff,tt}with lB(ff) = lB(tt) = 0, lists
L(A) = A∗ with lL(A)(〈a1, . . . ,an〉) = ∑

n
i=1 1+ lA(ai), and trees T(A) = A+T(A)⊗T(A)

with lT(A)(inl(a)) = lA(a) and lT(A)(inr(a,a′)) = 1 + lT(A)(a) + lT(A)(a′). An abstract
resource type ♦ is given by ♦ = {♦} with l(♦) = 1. It differs from the unit object
1 = {∗} with l(∗) = 0 only in its length measure.

Given f : A+B →C +B, we define its trace tr(f) : A →C by tr(f) = t ◦ inl, where
t : A+B →C is defined by

t(x) =

{
c if f (x) = inl(c),
t(inr(b)) if f (x) = inr(b).

Making essential use of the fact that all morphisms in L are non-size-increasing and that
the length measure underestimates the real size at most linearly, it follows that tr(f) is
again a morphism in L . That the definition of tr(f) satisfies the equations for trace,
see e.g. [8, Def. 2.1.16], can be seen by observing that the forgetful functor from L to
the traced monoidal category Pfn of sets and partial functions, see e.g. [8, Sec. 8.2], is
faithful and preserves both finite coproducts and trace.

3.2 Linear-space interaction

Computation by interaction is modelled by a GoI situation over L . For space reasons,
we can only give the basic definitions. We refer to [2, 8] for more details and discussion.

The category G has as objects pairs (A+,A−) of two objects of L . Here, A− is
thought of as a set of questions and A+ as a set of answers. The morphisms in G from
(A+,A−) to (B+,B−) are the L-morphisms of type A+ +B−→ A−+B+. We will often
use these two views of morphisms interchangeably. We write G(A,B) for the set of
morphisms in G from A to B. The identity on A is given by [inr, inl] : A+ + A− →
A−+A+. Composition g · f of two morphisms f : A → B and g : B →C is given by the
trace of (A−+g)◦ (f +C−) : A+ +B−+C− → A−+B−+C+ with respect to B−.

Of the structure of G , we spell out the symmetric monoidal structure ⊗, given on
objects by A⊗B = (A+ +B+,A−+B−) and on morphisms by using + on the underlying
L-morphisms. A unit for ⊗ is I = (/0, /0). Note I⊗ I = I. Note also that morphisms of
type I → A in G are the same as L-maps of type A− → A+ and that morphisms of type
A → I are the same as L-maps of type A+ → A−.

A monoidal closed structure is given on objects by (A (B) = (B+ +A−,B−+A+).
We write ε : (A (B)⊗A → B for the application map and Λ f : A → (B (C) for the
abstraction of f : A⊗B →C.

We use a storage functor !(−). On objects it is defined by !A = (A+⊗S,A−⊗S),
where S = B⊗T(L(B)). The intention is that a store in S is passed along with questions
and answers. The underlying L-map of the morphism ! f is the L-map f ⊗S.

3.3 Realisability and co-Realisability

As a way of formalising the compilation of functions into interaction-programs, we de-
fine a category R . Its definition is parameterised over a commutative monoid (M ,+,0),
equipped with a pre-order ≤ that is compatible with +.

Objects. The objects are tuples (|A|,A∗,AG ,,∗) consisting of a set |A| of underlying
elements, a set A∗ of underlying co-elements, an object AG of G , a realisation rela-
tion ⊆M ×G(I,AG)×|A| and a co-realisation relation ∗⊆M ×G(AG , I)×A∗.
The objects are required to have the following properties.
1. For all a∈ |A| there exist α and e such that α,e a holds. Dually, for all a∗ ∈A∗

there exist α and c such that α,c ∗ a∗ holds.
2. If α,e a and α≤ β hold then so does β,e a. Dually, if α,e ∗ a∗ and α≤ β

hold then so does β,e ∗ a∗.
Morphisms. A morphism from A to B consists of two functions f : |A| → |B| and

f ∗ : B∗ → A∗ for which there exists a map r : AG → BG in G satisfying:

∀α ∈ M , e : I → AG , x ∈ A. α,e A x =⇒ α,r · e B f (x),
∀β ∈ M , c : BG → I, k ∈ B∗. β,c ∗

B k =⇒ β,c · r ∗
A f ∗(k).

We also need the following more general form of morphism realisation.

Definition 1. A morphism r : AG → BG realises (f , f ∗) with bound ϕ ∈ M if

∀α ∈ M , e : I → AG , x ∈ A. α,e A x =⇒ ϕ+α,r · e B f (x),
∀β ∈ M , c : BG → I, k ∈ B∗. β,c ∗

B k =⇒ ϕ+β,c · r ∗
A f ∗(k).

While our definition of realisability is close to well-known instances of realisability,
such as e.g. [5, 15], the definition of co-realisability deserves comment. The main
purpose for introducing it is for modelling recursion in the way described in the in-
troduction. To implement recursion in this way, we need to control how often a re-
aliser r : AG → BG of the recursion step-function sends a question to its argument. Co-
Realisability is a way of obtaining control over how r uses AG . Suppose, for example,
that both A and B have only a single co-element that is co-realised by the empty func-
tion /0. If r realises a morphism A→ B then /0 ·r must also be the empty function. Hence,
whenever r receives an answer in A+

G , it cannot ask another question in A−G , since oth-
erwise /0 · r would not be empty. Thus, for any e : I → AG and any q ∈ B−G , in the course
of the computation of (r · e)(q), only one query can be sent by r to e. This is the main
example of how we control the behaviour of realisers with co-realisability. More gener-
ally, co-realisability formalises how an object A may be used. A co-realiser c : A+

G → A−G
explains which question we may ask after we have received an answer from an object.

A symmetric monoidal structure ⊗ on R is defined by letting the underlying set of
|A⊗B| be the set of pairs in |A|× |B|. The realising object (A⊗B)G is AG ⊗BG , and
the realisation relation is the least relation satisfying

(α,ex A x)∧ (β,ey B y) =⇒ α+β,ex⊗ ey A⊗B 〈x,y〉

in addition to the general requirements for objects of R (which from now on we will
tacitly assume). The set of co-elements and the co-realisation is defined as follows.

(A⊗B)∗ = {〈p : |A| → B∗,q : |B| → A∗〉 | ∃c,γ.(γ,c ∗A⊗B 〈p,q〉)}
γ,c ∗A⊗B 〈p,q〉 ⇐⇒ (∀α,e,a. (α,e A a) =⇒ (γ+α),c · (e⊗ id) ∗B p(a))

∧(∀β,e,b. (β,e B b) =⇒ (γ+β),c · (id⊗ e) ∗A q(b))

A unit object for⊗may be defined by |I|= {∗}, I∗ = {∗}, IG = (1,1), by letting α,e I ∗
hold if and only if e is the unique total function of its type, and by letting α,c ∗

I ∗ hold
if and only if c : 1 → 1 is the empty function.

A monoidal exponent (for ⊗ is defined by letting |A (B| be the set of pairs
〈 f , f ∗〉 in (|A| → |B|)× (B∗ → A∗) that are realised by some r with some bound ϕ, by
letting (A (B)∗ = |A| ×B∗ and (A (B)G = AG (BG , and by letting the relations
A(B and ∗

A(B be the least relations satisfying

ϕ,Λr A(B f ⇐⇒ r : AG → BG realises f with bound ϕ,

(α,e A a)∧ (β,c ∗B b∗) =⇒ α+β,c · ε · (id⊗ e) ∗
A(B 〈a,b∗〉.

The co-realisation of ⊗ is such that both components of a pair A⊗B can be used se-
quentially. This is not the only possible choice. Another useful choice is captured by the
monoidal structure ⊗1, where |A⊗1 B|= |A⊗B|, (A⊗1 B)G = (A⊗B)G , A⊗1B=A⊗B,
(A⊗1 B)∗ = A∗×B∗, and where ∗

A⊗1B is the smallest relation satisfying

(α,c ∗
A a∗)∧ (β,c′ ∗

B b∗) =⇒ (α+β,c⊗ c′ ∗
A⊗1B 〈a∗,b∗〉).

It is instructive to consider the case of morphisms f : A⊗1 B →C, where A and B have
only one co-element that is co-realised by the empty function. In this case, the realiser r

of f may ask either one question from A or one from B. This is in contrast to ⊗, where
it would be legal to ask one question from A and then another from B.

Lemma 1. There exists a natural map d : A⊗(B⊗1C)→B⊗1 (A⊗C) with d(a,〈b,c〉)=
〈b,〈a,c〉〉 and d∗(b∗,〈p,q〉) = 〈λa.〈b∗, p(a)〉,λ〈b,c〉.q(c)〉.

Lemma 2. There exists a natural map i : A⊗ B → A⊗1 B with i(a,b) = 〈a,b〉 and
i∗(a∗,b∗) = 〈λa.b∗,λb.a∗〉.

A further monoidal structure × is defined by |A×B|= |A|× |B|, (A×B)G = AG ⊗BG ,
(A×B)∗ = A∗+B∗, where A×B and ∗

A×B are the smallest relations satisfying

(α,ea A a)∧ (α,eb B b) =⇒ α,ea⊗ eb A×B 〈a,b〉,
(α,ca ∗

A a∗) =⇒ (α,ca ◦π1 ∗
A×B inl(a∗)),

(β,cb ∗
B b∗) =⇒ (β,cb ◦π2 ∗

A×B inr(b∗)).

The object A×B is not quite a cartesian product, as is witnessed by rule (×-I), which
has the context !〈∞,1〉Γ rather than Γ in its conclusion.

For the implementation of recursion, which requires that there is at most one query
to the recursion argument, the following smash-product ∗ is useful. It is defined by
|A∗B|= |A|× |B|, (A∗B)G = (A+

G ⊗B+
G ,A−G ⊗B−G), (A∗B)∗ = A∗×B∗, ∗

A∗B=∗
A⊗1B,

γ,e A∗B 〈x,y〉 ⇐⇒ ∃α,β,ex,ey.
(α+β ≤ γ)∧ (α,ex A x)∧ (β,ey B y)
∧∀qA,qB.(e(qA,qB) = 〈ex(qA),ey(qB)〉).

We use the smash-product for example for booleans, where the full information of B∗B
can be obtained with a single question. Notice that with B⊗B we would need two
questions, while with B⊗1 B we could only ask for one component.

Often it is useful to remove the co-realisation-information. This can be done with
the co-monad �(−) defined by |�A| = |A|, �A∗ = G(AG , I), (�A)G = AG , �A=A
and (α,c ∗

�A c′) ⇐⇒ c = c′.
As the final general construction on R , we define a lifting monad (−)⊥, which

we use for modelling partial functions. It is defined by |A⊥| = |A|+ {⊥}, A⊥∗ = A∗,
(A⊥)G = AG , ∗

A⊥
=∗

A, (α,e A⊥ a ∈ |A|) ⇐⇒ (α,e A a), and (α,e A⊥ ⊥) always.
There are evident morphisms A → A⊥, (A⊥)⊥ → A⊥, A • (B⊥) → (A • B)⊥ for any
• ∈ {⊗,⊗1,×,∗}, and �(A⊥)→ (�A)⊥.

We remark in passing that the definition of R and the construction of its structure
are very similar to the double glueing construction of Hyland and Schalk [12].

3.4 An Instance for Logarithmic Space

We consider R with respect to the monoid M = {〈l,k,m〉 ∈ N3 | l ≤ m} with addition
〈l,k,m〉+ 〈l′,k′,m′〉 = 〈l + l′,max(k,k′),max(l + l′,m,m′)〉. The neutral element 0 is
〈0,0,0〉. As ordering we use 〈l,k,m〉 ≤ 〈l′,k′,m′〉 ⇐⇒ (l ≤ l′)∧ (k ≤ k′)∧ (m ≤ m′).
The intended meaning of a triple 〈l,k,m〉 is that l is the abstract length of an object and
〈k,m〉 is a bound on the additional memory a realiser may use. We will allow realisers
to use k numbers with range {0, . . . ,m}.

We now consider the structure of R with respect to M , starting with an implemen-
tation of the base types of LogFPL.

Definition 2. An object A is simple if it enjoys the following properties.

1. Whenever α,e a holds, then there is a L-map e′ : A+
G → A−G with e′ ◦ e = id.

2. A∗ is a singleton and whenever α,c ∗ a∗ holds, then c is the empty function and
0,c ∗ a∗ holds as well.

3. Both A−G and A+
G have at least one element x with l(x) = 0.

We note that if A and B are simple then so are A⊗1 B and A∗B, but not in general A⊗B.
All the basic data types we now define are simple. Since the co-realisation relation

is uniquely determined by the definition of simpleness, we just show the realisation part.

Diamond. |♦|= {♦}, ♦G = IG , (α+ 〈1,0,1〉,e ♦ ♦) ⇐⇒ (α,e I ∗)
Booleans. |B|= {ff,tt}, BG = ({ff,tt},1), (α,e B b) ⇐⇒ (e(∗) = b)
Small Numbers. |SN| = N, SNG = (L(B),L(1)) and (〈l,k,m〉,e SN n) holds if and

only if both (l ≥ n) holds and e(s) equals the last s bits of n in binary.
Lists. Let A be a simple object. Define the simple object L(A) to have as under-

lying set |L(A)| the set of finite lists on |A|. The object L(A)G is given by
((A+

G +A−G)⊗L(B),A−G ⊗L(B)). The intention of A−G ⊗L(B) is that a question
consists of a pointer into the list, encoded in binary (without leading zeros) as an
element of L(B), together with a question for the element at the position pointed at.

α,e 〈a0, . . . ,an〉 ⇐⇒

∃~α ∈ M n+1.∃~e ∈ (I → AG)n+1.
(α ≥ 〈n+1,0,n+1〉+α0 + · · ·+αn)
∧(∀i. i ≤ n =⇒ αi,ei A ai)
∧(∀i,q. i ≤ n =⇒ e(q, i) = 〈inl(ei(q)), i〉)
∧(∀i,q. i > n =⇒ e(q, i) = 〈inr(q), i〉)

We note that L(A) as such is not yet very useful, since, for instance, there is no
map tail : L(A)→ L(A), as we do not always have enough space to map a question
〈qA, i〉 to 〈qA, i+1〉. We address this with the construction M(−) below.

Data storage Often when passing a question to an object, we also need to store some
data that we need again once the answer arrives. Such data storage is captured by the
functor !(−) defined as follows. The set of underlying elements of !A is inherited from
A, i.e. |!A| = |A|. The realising object (!A)G is !(AG) and the realisation relation is
the smallest realisation relation satisfying 〈l,k,m〉,e A a =⇒ 〈l,k +1,m〉, !e !A a in
addition to the general requirements for objects in R . The set of co-elements is defined
by (!A)∗ = |S| → A∗ and the co-realisation relation on !A is given by

α,c ∗
!A a∗ ⇐⇒ ∀s ∈ |S|.∃cs.(α,cs ∗

A a∗(s))∧ (∀q.c(q,s) = 〈cs(q),s〉).

While there is a natural dereliction map !A→ A, there is no digging map !A→ !!A, since
we do not have an additional ♦ that we would need to encode two trees in one.

Lemma 3. There are natural transformations �!A → !�A, (!A⊗ !B) → !(A⊗B) and
!(A⊥)→ (!A)⊥ as well as a natural isomorphism (!A⊗1 !B)∼= !(A⊗1 B).

Memory allocation We have defined the monoid M with the intuition that if e realises
some element with bound 〈l,k,m〉 then e can use k memory locations of size log(m)+1.
However, the above definition of the data types is such that, besides the question itself,
no memory can be assumed. We now add a memory supply to the data types.

Let A be a simple object such that for each a ∈ |A| there exist l, m and e satisfying
〈l,0,m〉,e A a. To define a simple object MA, let |MA|= |A|, (MA)∗ = A∗ and (MA)G =
(A+

G ⊗L(L(1)),A−G ⊗L(L(1))). The intended meaning of (MA)G is that a question in
A−G comes with a sufficiently large block of memory, viewed as an element of L(L(1)).
This block of memory can be used for computing an answer, but must be returned with
the answer at the end of the computation. We define memory blocks as follows.

Definition 3. Let 〈k,m〉 be a pair of natural numbers. The set L〈k,m〉 ⊆ L(L(1)) of
〈k,m〉-memory blocks is the least set containing all the lists x = 〈x1, . . . ,xn〉 with n≥ k,
such that each xi is a nonempty list in L(1) and ∀i. (1≤ i≤ n−1) =⇒ l(xi) = bl(x)/nc
and bl(x)/nc ≥ (log(m)+1) and l(xn) = (l(x) mod n) all hold.

In short, L〈k,m〉 provides enough space for at least k binary numbers with range
{0, . . . ,m}. Given a memory block x = 〈x1, . . . ,xn〉 ∈ L〈k,m〉, we refer to the length of
x1 as the size of memory locations in x. The definition of L〈k,m〉 is such that, for any
two nonempty lists s,s′ ∈ L〈k,m〉, we have s = s′ if and only if both l(s) = l(s′) and
l(head(s)) = l(head(s′)) hold. This makes it easy to reconstruct the original memory
block after part of it has been used in a computation.

Now the realisation on MA is defined such that 〈l,k,m〉,e MA a holds if and only if
∀s ∈ L〈k,m〉.∃es.(〈l,0,m〉,es A a)∧ (∀q.e(q,s) = 〈es(q),s〉) holds. The co-realisation
relation on MA is determined by the requirement that MA be simple.

Lemma 4. There are isomorphisms M(A⊗1 B)∼= MA⊗1 MB and M(A∗B)∼= MA∗MB
for all objects A and B for which MA and MB are defined.

All the base types of LogFPL are interpreted by objects of the form MA, e.g. we use
ML(MB) as the interpretation of L(B). Some simplification is given by the next lemma.

Lemma 5. There are maps ML(MA)→ ML(A) and !ML(A)→ ML(MA).

Proposition 3. The underlying function of each map f : !kML(B)⊗!kML(I)→ML(B)
is LOGSPACE-computable.

Proof (Sketch). We construct a Turing Machine T using a realiser r for f . From r
we build a sub-routine of T , which on one work tape takes a (code for a) question
q ∈ (ML(B))−G and on the same tape returns an answer in (ML(B))+G . The sub-routine
works by running r, and whenever r returns a question for its argument, the sub-routine
reads the relevant part from the input tape and passes the answer to r. Since r is a mor-
phism in L , this uses only linear space in the size of the question q. We now use this
sub-routine to compute the output of T . Write x, y for the two inputs to T . First we
write a memory block in L〈k,|x|+|y|〉 to one work tape. This can be done since k is con-
stant and the block has logarithmic size. Using this block, the above sub-routine is used
to compute the bits of the output one-by-one. Since f is non-size-increasing, it suffices
to continue until bit number |x|+ |y|. Hence, we only need to consider questions as large

as log(|x|+ |y|)+1. Since the space needed for answering questions is linear in the size
of the question, the whole procedure uses logarithmic space in the size of the inputs.

It remains to show that the output of this algorithm is correct. Let x and y be the two
inputs. We then have 〈|x|,0, |x|〉,ex ML(B) x and 〈|y|,0, |y|〉,ey ML(I) y, where ex and ey
are programs that answer the given question by reading the input tape (note that x and y
are now fixed, so that |x| and |y| appear as constants in the space-usage of ex and ey). By
the realisation property, we have 〈|x|+ |y|,k, |x|+ |y|〉,r · (!kex ⊗ !key) ML(B) f (x,y).
Since the sub-routine described above computes r · (!kex ⊗ !key), it then follows by the
definition of the realisation on ML(B), that the algorithm computes the correct output.

We now implement the constants for lists. We omit the other constants for space reasons.

Lemma 6. Let A = MA′ and B = MB′ be simple objects of R . Then there are mor-
phisms cons : M♦⊗1 A⊗1 !ML(A)→ML(A), hdtl : !ML(A)→ (M♦⊗1 A⊗1 ML(A))⊥
and empty : ML(A)→ MB defined by:

cons(a,~a) = 〈a,~a〉 hdtl(〈〉) =⊥ empty(〈〉) = tt

hdtl(〈a,~a〉) = 〈♦,a,~a〉 empty(〈a,~a〉) = ff

To complete the constructions for lists, it remains to implement recursion. The properties
we need of the result type of a recursion are captured by the next three definitions.

Definition 4. An object A has unique answers if, for all x ∈ |A| and all q ∈ A−G , there
exists a unique a ∈ A+

G such that, for all α and e, (α,e x) implies e(q) = a.

The next definition expresses that we only need to consider small questions. For in-
stance, for an element x ∈ L(B) with 〈l,k,m〉,e x, we only ever need to consider
questions q with l(q) ≤ log(m)+ 1, since all larger questions will be out of range. We
use this property to ensure that we do not run out of memory during a recursion.

Definition 5. Object A has n-small questions if there are maps cut : A−G ⊗L(1) → A−G
and expand : A−G ⊗A+

G → A+
G , such that 〈l,k,m〉,e x implies l(cut(q,s)) ≤ l(s) and

expand(q,e(cut(q,s))) = e(q) for all q∈A−G and all s∈L(1) with l(s)≥ n(log(m)+1).

Finally, to write a program for recursion we must be able to store questions and answers.

Definition 6. An object A is n-encodable if, for each X ∈ {A−G ,A+
G}, there are maps

lenX : X → L(1), codeX : ♦n ⊗X → S and decodeX : S → ♦n ⊗X, with the properties
∀x ∈ X . l(x) = l(lenX (x)) and decodeX ◦ codeX = id.

Each recursion type, as defined in Fig. 2, is simple and enjoys the properties of these
definitions. In general, this holds neither for A⊗B nor for A (B.

Proposition 4. Let R be a simple object with unique answers and kR-small ques-
tions, which in addition is kR-encodable. Let 〈0,k,m〉,eh !i♦⊗(�!iMA)⊗!iMR(MR h.
Then the function fh : !4+7kRMR⊗�!i+4+7kRML(A) → MR given by fh(g,〈〉) = g and
fh(g,〈x,~x〉) = h(♦,x, fh(g,~x)) is realised with bound 〈0,k +4+7kR,m〉.
Let us explain the idea of the realiser for recursion informally. Suppose, for instance,
we want to compute fh(g,〈a1,a1,a0〉) for certain elements g, a0 and a1. Write h0 and h1
for the functions of type !MR (MR that arise from h by instantiating the first argument
with a0 and a1 respectively. Then, the algorithm for computing fh(g,〈a1,a1,a0〉) can be

Fig. 4. Illustration of recursion

depicted as in Fig. 4. The edge labelled with − represents an initial question. The edges
labelled with !− represent questions of h j to the recursion argument, the answer to which
is expected in the !+-port of the same box. The presence of the modality ! expresses
that along with the question, h j may pass some store that must be returned unchanged
with the answer. Now, if we were to remember the store of each h j in the course of the
recursion then we would need linear space (in the length of the second argument of f)
to compute it. Instead, whenever h j sends a question !− to its recursion argument, we
forget h j’s local store (the value stored in the !) and just pass the question to the next
instance of h j. If g or some h j gives an answer in its +-port, then we would like to
pass this answer to the edge labelled with !+ into the next box to the left. However,
we cannot go from + to !+, as there is no way to reconstruct the store that we have
discarded before. Nevertheless, it is possible to recompute the store. We remember the
answer in + and the position of the box that gave the answer and restart the computation
from the beginning. During this computation, the question in !−, which is answered by
the saved answer, will be asked again. We can then take the store of the question in !−
and the saved answer in + to construct an answer in !+ and pass it on as an answer to the
question in !−. In this way, the local store of the step functions h j can be recomputed.
For the correctness of this procedure it is crucial that each h j asks at most one question
of the recursion argument, which follows from the co-realisation information on h. It is
instructive to check this property for the step-function of focus in Sect. 2.1.

This description of the implementation of recursion can be formalised in G by a mor-
phism rec : !r(MR)G⊗!r(!i(♦G ⊗ (MA)G ⊗ (MR)G) ((MR)G)⊗!r!iL(A)G → (MR)G ,
where r = 4+7kR. The morphism rec is defined such that, for all 〈lg,kg,mg〉,eg MR g
and 〈lx,kx,mx〉,ex ML(A) x, the map rec ·(!reg⊗!reh⊗!r+iex) realises fh(g,x) with bound
α = 〈0,k + r,m〉+〈lg,kg + r,mg〉+〈lx,kx +r+ i,mx〉. Prop. 4 follows from this property.

More details about the implementation of rec can be found in the appendix. Here,
we outline how the r memory locations in the modalities !r are used by rec. The
definition of the realisation on MR is such that we can assume that a question to
rec · (!reg⊗!reh⊗!r+iex) comes together with a memory block m ∈ L〈kα,mα〉. Since we
know α = 〈lα,max(k,kg,kx + i) + r,max(m,mg,mx)〉, we can thus assume at least r
memory locations of size log(mα) + 1 and we can assume that the rest of the mem-
ory is still large enough to satisfy the memory requirements of g, h and x. We use the
r = 4+7kR memory cells, to store the following data: the initial question (startqn); the
current question (qn); the current recursion depth (d); whether some answer has already
been computed (store), the stored answer (sa) and its recursion depth (sd); a flag (xo)
to record how answers from the argument x should be interpreted. Since R has kR-small
questions and the questions and answers are kR-encodable, each of the fields startqn, qn
and sa can be stored using 2kR memory locations in m. The fields store, d, sd and xo
can each be stored in a single memory location in m, since d and sd represent numbers
in {0, . . . , |x|}. The remaining kR memory locations provide enough memory for the
current question/answer.

3.5 Interpreting LogFPL

The types of LogFPL are interpreted in R by the following clauses.

JAK = MA, where A ∈ {I,♦,B,SN}
JL(A)K = M(L(JAK)) JA

·,i
−(BK = !iJAK (JBK⊥

JA•BK = JAK•JBK, where • ∈ {∗,⊗1,×} JA
∞,i
−(BK = �!iJAK (JBK⊥

Contexts are interpreted by JΓK = JΓK′⊗ JΓK1, where J()K′ = J()K1 = I and

JΓ,x
〈∞,i〉

: AK′ = JΓK′⊗�!iJAK JΓ,x
〈∞,i〉

: AK1 = JΓK1

JΓ,x
〈·,i〉
: AK′ = JΓK′⊗ !iJAK JΓ,x

〈·,i〉
: AK1 = JΓK1

JΓ,x
〈1,i〉

: AK′ = JΓK′ JΓ,x
〈1,i〉

: AK1 = JΓK1⊗1 !iJAK.

Proposition 5. For each judgement Γ ` M : A, there is a map m : JΓK → JAK⊥ in R ,
such that the underlying function of m amounts to the functional interpretation of M.

Proof. The proof goes by induction on the derivation of Γ ` M : A. As a representative
case, we consider (⊗1-E). The induction hypothesis gives JΓK → (JAK⊗1 JBK)⊥ and
J∆′K′⊗(J∆1K1⊗1 !iJAK⊗1 !iJBK)→ JCK⊥ for appropriate ∆′ and ∆1 with ∆ = ∆′,∆1. With
the isomorphism !(X ⊗1 Y) ∼= !X ⊗1 !Y and the operations on (−)⊥, we obtain a map
J∆′K′ ⊗ (J∆1K1 ⊗1 !iJΓK) → JCK⊥. Using the morphisms from Lemma 3, we obtain
J!〈1,i〉ΓK → !iJΓK. By use of X ⊗ (Y ⊗1 Z) → Y ⊗1 (X ⊗ Z), we obtain J∆, !〈1,i〉ΓK →
J∆′K′⊗ (J∆1K1⊗1 !iJΓK). Putting this together gives the required J∆, !〈1,i〉ΓK→ JCK⊥.

To see that Prop. 4 is applicable for the interpretation of recursion, notice that
〈l,k,m〉,e A(MBk d implies 〈0,k,m〉,e A(MBk d. This follows using the definition
of the realisation on (, since the same property holds by definition for MBk. Further-
more, each recursion type A (as defined in Fig. 2) is interpreted by a k(A)-encodable,
simple object with unique answers and k(A)-small questions. Thus Prop. 4 can be used
for the interpretation of recursion. ut
With the interpretation, LOGSPACE-soundness (Prop. 1) now follows as in Prop. 3.

4 Conclusion and Further Work

We have introduced a computation-by-interaction model for space-restricted computa-
tion and have designed a type system for LOGSPACE on its basis. We have thus demon-
strated that the model captures LOGSPACE-computation in a compositional fashion. As
a way of controlling the subtle interaction-behaviour in the model, we have identified
the concept of co-realisability. Using this concept, we were able to formalise the subtle
differences between types such as (�A)⊗B, A⊗B and A⊗1 B in a unified way.

For further work, we plan to consider extensions of LogFPL. We believe that there
is a lot of structure left in the model that can be used to justify extensions. For instance,
we conjecture that it is possible to define first-order linear functions by recursion, i.e. to
allow a form of parameter substitution. We expect that, using an argument similar to
the Chu-space approach of [10], co-realisability can be used to reduce recursion with
first-order functional result type to iterated base-type recursion.

Other interesting directions for further work include to consider other complexity
classes such as polylogarithmic space and to further explore the connections to linear
logic. It may also be interesting to find out if recent work on algorithmic game semantics,
as in e.g. [7, 1], can be utilised for our purposes. A referee raised the interesting question
about the relation of our computation model based on a GoI-situation to oracle-based
computing in traditional complexity models. We plan to consider this in further work.

Acknowledgments I thank Martin Hofmann and Jan Johannsen for helpful advice and
the anonymous referees for their comments and corrections. This work has been sup-
ported by the Deutsche Forschungsgemeinschaft (DFG) as part of the project Pro.Platz.

References
1. S. Abramsky, D. R. Ghica, A.S. Murawski, and C.-H.L. Ong. Applying game semantics to

compositional software modeling and verification. In TACAS04, pages 421–435, 2004.
2. S. Abramsky, E. Haghverdi, and P.J. Scott. Geometry of interaction and linear combinatory

algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
3. S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic

(extended abstract). In FSTTCS92, pages 291–301, 1992.
4. S.J. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis, Univer-

sity of Toronto, 1992.
5. U. Dal Lago and M. Hofmann. Quantitative models and implicit complexity. In FSTTCS05,

pages 189–200, 2005.
6. V. Danos, H. Herbelin, and L. Regnier. Game semantics & abstract machines. In LICS96,

pages 394–405, 1996.
7. D.R. Ghica and G. McCusker. Reasoning about idealized algol using regular languages. In

ICALP, pages 103–115, 2000.
8. E. Hahgverdi. A Categorical Approach to Linear Logic, Geometry of Proofs and Full Com-

pleteness. PhD thesis, University of Ottawa, 2000.
9. M. Hofmann. Linear types and non-size-increasing polynomial time computation. Informa-

tion and Computation, 183:57–85, 1999.
10. M. Hofmann. Semantics of linear/modal lambda calculus. Journal of Functional Program-

ming, 9(3):247–277, 1999.
11. M. Hofmann. Programming languages capturing complexity classes. SIGACT News,

31(1):31–42, 2000.
12. J.M.E. Hyland and A. Schalk. Glueing and orthogonality for models of linear logic. Theo-

retical Computer Science, 294(1–2):183–231, 2003.
13. N.D. Jones. LOGSPACE and PTIME characterized by programming languages. Theoretical

Computer Science, 228(1–2):151–174, 1999.
14. L. Kristiansen. Neat function algebraic characterizations of LOGSPACE and LINSPACE. Com-

putational Complexity, 14:72–88, 2005.
15. J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis, University of

Edinburgh, 1994.
16. I. Mackie. The geometry of interaction machine. In POPL95, 1995.
17. P. Møller-Neegaard. Complexity Aspects of Programming Language Design. PhD thesis,

Brandeis University, 2004.
18. Peter Møller Neergaard. A functional language for logarithmic space. In APLAS, pages

311–326, 2004.
19. D. Sannella, M. Hofmann, D. Aspinall, S. Gilmore, I. Stark, L. Beringer, H.-W. Loidl,

K. MacKenzie, A. Momigliano, and O. Shkaravska. Mobile Resource Guarantees. In Trends
in Functional Programing, volume 6, Tallinn, Estonia, Sep 23–24, 2005. Intellect.

A Appendix

We give details of the implementation of the realiser

rec : !r(MR)G⊗!r(!i(♦G ⊗ (MA)G ⊗ (MR)G) ((MR)G)⊗!r!iL(A)G → (MR)G ,

for recursion, as described in Sec. 3.4. To make the description more readable, we make
the passing around of store (in !r−) and of memory blocks (in M−) implicit. That is, we
describe a function rec′ that has access to a global persistent store of the form described
above and in which memory (de)allocation is handled implicitly. From this description
an implementation of rec, which e.g. uses !r!iMR−G instead of !iR−G , can be derived.

The input of rec′ is in

R+
G︸︷︷︸
g

+ !i♦−
G+!iA−G+!iR−G +R+

G︸ ︷︷ ︸
h

+(L(A))+G︸ ︷︷ ︸
x

+ R−G︸︷︷︸
initial question

and its output is in

R−G︸︷︷︸
g

+ !i♦+
G+!iA+

G+!iR+
G +R−G︸ ︷︷ ︸

h

+(L(A))−G︸ ︷︷ ︸
x

+ R+
G︸︷︷︸

final answer

.

We write ing, inhd , inhr , inhx , inh, inx, in1 for the injections (from left to right) into these
types. We assume a global store containing startqn, qn, d, store, sd, sa, xo. We make
memory (de)allocation implicit and write len for the size of memory locations in the
memory block. Let qA be some element of A−G with l(qA) = 0, which exists because A
is a simple object.

With this notation, the morphism rec can be implemented as in Fig 1.

rec′ in1(q) = (initial question)
qn := cut(q, len); startqn := qn; d := 0; store := 0; xo := 1;
return inx(〈qA,d〉,nili)

rec′ ing(a) = (answer from g)
if d = 0 then (if the recursion depth is 0 then a is the final answer)

in1(expand(qn,a))
else (at recursion depth > 0 we store the answer and restart)

store:=1; sa:=a; sd:=d;
qn:=startqn; d:=0; xo:=1;
return inx(〈qA,nil〉,nili)

end

rec′ inhd (∗,sl) = inhd (∗,sl)
rec′ inhr(q,sl) = (h asks for the recursion argument)

if store = 1∧ sd = d +1 then (if the store contains the answer we return it)
inhr(expand(q,sa),sl)

else (else we free h’s local store sl and continue at recursion depth d +1)
qn:=cut(q, len); d:=d +1; xo:=1;
return inx(〈qA,d〉,nili)

end

rec′ inhx(q,sl) = (if h asks q of its first argument, we send q to element d in list x)
inx(〈q,d〉,sl)

rec′ inh(a) = rec′ ing(a) (answers from h are treated like those from g)
rec′ inx(a,sl) = (answer from x)

if xo = 0 then (if a answers a question from h, we pass it back to h)
inhx(a,sl)

else (else send qn to g if x has no element at position d and to h otherwise)
xo:=0;
if a = 〈inr(qA),d〉 then (〈inr(qA),d〉 means list x has ≤ d elements)

if store = 0 then return ing(qn) else ⊥
else

return inh(qn)
end

end
Algorithm 1: Implementation of recursion

