Pure Pointer Programs with Iteration

Martin Hofmann and Ulrich Schopp

Ludwig-Maximilians-Universitit Miinchen
D-80538 Munich, Germany

Abstract. Many LOGSPACE algorithms are naturally described as programs that
operate on a structured input (e.g. a graph), that store in memory only a constant
number of pointers (e.g. to graph nodes) and that do not use pointer arithmetic.
Such “pure pointer algorithms” thus are a useful abstraction for studying the na-
ture of LOGSPACE-computation.

In this paper we introduce a formal class PURPLE of pure pointer programs
and study them on locally ordered graphs. Existing classes of pointer algorithms,
such as Jumping Automata on Graphs (JAGs) or Deterministic Transitive Closure
(DTC) logic, often exclude simple programs. PURPLE subsumes these classes and
allows for a natural representation of many graph algorithms that access the input
graph by a constant number of pure pointers. It does so by providing a primitive
for iterating an algorithm over all nodes of the input graph in an unspecified order.

Since pointers are given as an abstract data type rather than as binary digits
we expect that logarithmic-size worktapes cannot be encoded using pointers as is
done, e.g. in totally-ordered DTC logic. We show that this is indeed the case by
proving that the property “the number of nodes is a power of two,” which is in
LOGSPACE, is not representable in PURPLE.

1 Introduction

One of the central open questions in theoretical computer science is whether LOGSPACE
equals PTIME and more broadly an estimation of the power of LOGSPACE computation.
While these questions remain as yet inaccessible, one may hope to get some useful
insights by studying the expressive power of programming models or logics that are
motivated by LOGSPACE but are idealised and thus inherently weaker. Examples of such
formalisms that have been proposed in the literature are Jumping Automata on Graphs
(JAGs) [2] and Deterministic Transitive Closure (DTC) logic [3]. Both are based on the
popular intuition that a LOGSPACE computation on some structure, e.g. a graph, is one
that stores only a constant number of graph nodes. Many usual LOGSPACE algorithms
obey this intuition and are representable in those formalisms. Interestingly, there are also
natural LOGSPACE algorithms that do not fall into this category. Reingold’s algorithm
for st-connectivity in undirected graphs [13], for example, uses not only a constant
number of graph nodes, but also a logarithmic number of boolean variables, which are
used to exhaustively search the neighbourhood of nodes up to a logarithmic depth.
Indeed, Cook & Rackoff [2] show that st-connectivity is not computable with JAGs.
On the other hand, JAGs cannot compute some other problems either, for which there
does exist an algorithm obeying the above intuition, such as a test for acyclicity in

graphs. Likewise, DTC logic without a total order on the graph nodes is fairly weak and
brittle [8, 5], being unable to express properties such as that the input graph has an even
number of nodes.

By assuming a total order on the input structure these deficiencies are removed,
but DTC logic becomes as strong as LOGSPACE, because the total order can be used to
simulate logarithmically sized work tapes [3].

We thus find that neither JAGs nor DTC logic adequately formalise the intuitive
concept of “using a constant number of graph variables only.” In this paper we introduce
a formalism that fills this gap. Our main technical result shows that full LOGSPACE does
not enter through the backdoor by some encoding, as is the case if one assumes a total
order on the input structure.

One reader remarked that it was known that LOGSPACE is more than “constant num-
ber of pointers”, but up until the present contribution there was no way of even rigor-
ously formulating such a claim because the existing formalisms are either artificially
weak or acquire an artificial strength by using the total order in a “cheating” kind of
way.

To give some intuition for the formalism introduced in this paper, let us recall that
a JAG is a finite automaton accepting a locally ordered graph (the latter means that
the edges emanating from any node are uniquely identified by numbers from 1 to the
degree of that node). In addition to its finite state a JAG has a finite (and fixed) number of
pebbles that may be placed on graph nodes and may be moved along edges according
to the state of the automaton. The automaton can check whether two pebbles lie on
the same node and obtains its input in this way. Formally, one may say that the input
alphabet of a JAG is the set of equivalence relations on the set of pebbles.

JAGs cannot visit all nodes of the input graphs and therefore are incapable of evalu-
ating DTC formulas with quantifiers. To give a concrete example, the property whether
a graph contains a node with a self-loop is not computable with JAGs.

Rather than as an automaton, we may understand a JAG as a while-program whose
variables are partitioned into two types: boolean variables and graph variables. For
boolean variables the usual operations are available, whereas for graph variables one
only has equality test and, for each 7, a successor operation to move a graph variable
along the 7-th edge.

Our proposal, which we call PURPLE for “PURe Pointer LanguagE”, consists of
adding to this programming language theoretic version of JAGs a forall-loop construct
(forall x do P) whose meaning is to set the graph variable z successively to all graph
nodes in some arbitrary order and to evaluate the loop body P after each such setting.
The important point is that the order is arbitrary and will in general be different each
time a forall-loop is evaluated. A program computes a function or predicate only if it
gives the same (and correct) result for all such orderings.

The forall-loop in PURPLE can be used to evaluate first-order quantifiers and thus
to encode DTC logic on locally ordered graphs. Moreover, PURPLE is strictly more
expressive than that logic. The following PURPLE-program checks whether the input
graph has an even number of nodes: (b := true; forall x do b:=—b). It is known that
this property is not expressible in locally-ordered DTC logic, which establishes strictness
of the inclusion.

Beside the introduction of PURPLE, the main technical contribution of this paper is
a proof that PURPLE is not as powerful as all of logarithmic space and that in particular
one cannot use the forall-loop to somehow simulate counting, as one can in totally
ordered DTC logic [3]. We do this by showing that the property “the number of nodes
is a power of two” is not computable in PURPLE. We believe that st-connectivity in
undirected graphs is not computable in PURPLE either.

In order to justify the naturality of PURPLE we can invoke, besides the fact that
formulas of locally-ordered DTC logic may be easily evaluated, the fact that iterations
over elements of a data structure in an unspecified order are a common programming
pattern, being made available e.g. in the Java library for the representation of sets as
trees or hash maps. The Java API for the i terator method in the interface Set or its
implementation HashSet says that “the elements are returned in no particular order”.

Efficient implementations of such data structures, e.g. as splay trees, will use a
different order of iteration even if the contents of the data structure are the same. Thus,
a client program should not depend upon the order of iteration. A spin-off of PURPLE is
arigorous formalisation of this independence.

2 Pointer Structures

We define the class of structures that serve as input to pure pointer programs.

Definition 1. Let L = {l1, ..., 1, } be afinite set of operation labels. A pointer structure
on L, an L-model for short, is a set U with n unary functions ly,...,l,,: U — U.

An L-model can be viewed as the current state of a program with pointers pointing uni-
formly to records whose fields are labelled {1, ..., [, }. For example, if L is {car, cdr}
then an L-model is a heap layout of a LISP-machine. We show in the next section how
various kinds of graphs can be represented as L-models.

A homomorphism o: U — U’ between L-models U and U’ is a function
o: U — U’ such that [(c(x)) = o(I(x)) holds for all | € L and = € U. A bijective
homomorphism is called an isomorphism.

3 Pure Pointer Programs

Pure pointer programs take L-models as input. Unlike general programs with pointers
they are not permitted to modify the input, but only to inspect it using a constant number
of variables holding elements of U. In addition, pure pointer programs have a finite
local state represented by a constant number of boolean variables. The pointer language
PURPLE is parameterised by a finite set of operation labels L = {l1,...,l,}.

Terms There are two types of terms, one for boolean values and one for pointers into
the universe U. Fix countably infinite sets Vars and Varsp of pointer variables and
boolean variables. We make the convention that x, y denote pointer variables and b, ¢
denote boolean variables. The terms are then generated by the grammars below.

tP = true | false | b | =P | tB AP | B v P |tV =Y

tVon=a [tV |- | tY.1,

The intention is that pointer terms denote elements of the universe U of an L-model and
that the term .l denotes the result of applying the unary operation [in this model to x.
The only direct observation about pointers is the equality test ¢ = ¢'.

Programs The set of PURPLE programs is defined by the following grammar.

P:=skip | P;P|x:=tY | b:=tP | if t® then P else P
| while t¥ do P | forall x do P

We abbreviate (if b then P else skip) by (if b then P). The intended behaviour
of (forall z do P) is that the pointer variable z iterates over U in some unspecified
order, visiting each element exactly once, and P is executed after each setting of x.

On certain classes of L-models the power of PURPLE coincides with LOGSPACE.
This is in particular the case if one of the functions /; is the successor function induced
by a total ordering on U. In general, however, PURPLE fails to capture all of LOGSPACE,
as we show in Sect. 5. Since we are interested mainly in pointer programs on locally
ordered graphs, let us now discuss different possible choices of operation labels for
working with locally ordered graphs.

Graphs of constant degree Pointer algorithms on locally ordered graphs of some fixed
out-degree d are most easily represented as an L-model with L being {succ, . . ., succq}
and U being the set of nodes in G. We write A4(G) for this L-model.

Graphs of unbounded degree For graphs of unbounded degree, it is more suitable
to use pointer programs with three labels succ, next and prec. Each locally ordered
graph G determines a model A(G) of these labels. The universe of A(G) is the set U =
{(v,i) |v €V, 0<i< deg(v)}, where V denotes the node set of G. A pair (v,i) € U
with ¢ > 0 represents an outgoing edge from v. Such pairs are often called darts,
especially in the case of undirected graphs, where each undirected edge is represented
by two darts, one for each direction in which the edge can be traversed. We include
objects of the form (v, 0) to model the nodes themselves; thus the universe consists of
the disjoint union of the nodes and the darts. The operation labels are interpreted by

, (succ;(v),0) ifi>1,
suce(v,§) = {<v 0>Z ifi=0

next(v,i) = (v, min(i + 1, deg(v))),
prec(v,i) = (v, max(i — 1,0)).

Using next and prec one can iterate over the darts on a node and using succ one can
follow the edge identified by a dart.

The presentation of graphs by darts and operations on them is commonly used in the
description of LOGSPACE-algorithms [1, 13, 10], but it is also prevalent in other contexts,
see [7] and the discussion there.

We note that with the dart representation, the forall-loop iterates over all darts and
not the nodes of the graph. Iteration over all nodes can nevertheless be implemented
easily. Since a program can recognise if is a dart of the form (v, 0) by testing whether
x = x.prec is true, one can implement a forall-loop that visits only darts of the
form (v, 0) and this amounts to iteration over all nodes.

While we have now introduced two representations for graphs of bounded degree,
it is not hard to see that it does not matter which representation we use, as each
program with labels succy, ..., succg can be translated into a program with labels
succ, prec, next that recognises the same graphs, and vice versa.

3.1 Examples

We give two examples to illustrate the use of PURPLE. The first simple example pro-
gram decides the property that all nodes have even in-degree. First we define a program
E(z,y,b) with variables z, y and b, such that after evaluation of F(z, y,b) the boolean
variable b is true if and only if there is an edge from the node given by x to that given
by y. Such a program may be defined as:

b:=false; ' :=x
while =(2' = 2'.next) do 2’ := 2’ .next;

while =(2' = 2’.prec) do (b:=bV (y = 2’.succ); z' :=12'.prec)

Herein, 2’ should be chosen afresh for each occurrence of E(z,y,b) within a larger
program. The following program then computes if the in-degree of all nodes is even.

even :=true;
forall x do
c :=true;
forall y do (if y = y.prec then (E(y, z,b); if b then ¢ :=—c¢));

even :=even N\ ¢

In the inner forall-loop we have a test for (y = y.prec), so that the body of this loop
is executed once for each graph node, rather than for each dart. In this way, the inner
forall-loop is used to iterate over all nodes that have an edge to z. In the body we then
make the assignment ¢ := —c¢ for all nodes y that have an edge to x.

For a second, more substantial, example we show that acyclicity of undirected
graphs can be decided in PURPLE, which is a well-known LOGSPACE-complete prob-
lem [1]. We next describe the LOGSPACE-algorithm of Cook & McKenzie [1] and then
show that it can be written directly in PURPLE. The fact that PURPLE can express a
LOGSPACE-complete problem does not conflict with PURPLE being strictly weaker than
LOGSPACE, since not all reductions can be expressed in PURPLE.

Let G be an undirected locally ordered graph with node set V' and let U be the
universe of A(G). Let o be the permutation on U such that o(v,0) = (v,0) holds
and such that o(v,4) = (w, j) implies both succ(v,i) = w and suce(w, j) = v. Note
that in an undirected graph each edge between v and w is given by two half-edges,
one from v to w and one from w to v. Thus, if the dart (v,) represents one half of
an edge in G, then o(v,%) represents the other half of the same edge. Let 7 be the
permutation on U satisfying 7(v,0) = (v,0), 7(v,4) = (v,i + 1) for 1 < i < deg(v)
and 7 (v, deg(v)) = (v, min(1, deg(v)).

Consider now the composite permutation moo on U. It implements a way of explor-
ing the graph G in depth-first-search order. That is, the walks in depth-first-search order

are the obtained as the sequences of darts xg,x1, ... defined by z;11 = (7 0 o)(z;).
Since these sequences are generated by the composite permutation 7 o o, it is easy to
see that they can be generated in logarithmic space.

Being able to construct walks in depth-first-search order, one can use the following
characterisation of acyclicity of undirected graphs to decide this property in LOGSPACE.
An undirected graph is acyclic, if it does not have self-loops and if, for any node v
and any integer ¢, the walk that starts by taking the ¢-th edge from v and proceeds in
depth-first-search order does not visit v again until it traverses the ¢-th edge from v in
the opposite direction. This is formulated precisely in the following lemma, a proof of
which can be found in [1].

Lemma 2. The undirected graph G is acyclic if and only if the following property holds
Sforall xg € {(v,3) | v €V, 1 < i < deg(v)}: If the walk xg, 1, ... is defined by
xiy1 = (moo)(x;) and k > 0 is the least number such that xo and xy, are darts on the
same node, then both k > 1 and o(x;_1) = x¢ hold.

It now only remains to show that the property in this lemma can be decided in PURPLE.
A program Py, (x) implementing the permutation 7 o o can be written easily, since the
forall-loop allows one to iterate over all the neighbours of any given node. Moreover,
it is easy to write a program P—(z, y, b) that sets the boolean variable b to true if z and y
are darts on the same node and to false otherwise. With these programs, the property of
the above lemma can be decided in PURPLE as follows:

acyclic :==true
forall x do
if —=(z = x.prec) then
keqO :=true; kleql :=true; xg :=x; returned := false;
while —returned do
(kleql = keqO; keq0 :=false; x’ :=
P,(z"); acyclic := acyclic \ —kleql N

Z; Prog(x); P=(x0,x, returned));
(2" = x)

3.2 Operational Semantics

PURPLE is defined with the intention that an input must be accepted or rejected regard-
less of the order in which the forall-loops are run through. In this section we give the
operational semantics of PURPLE, thus making this intention precise.

The operational semantics of PURPLE with operation labels in L is parameterised
by an L-model A = (U,1) and is formulated in terms of a small-step transition rela-
tion — 4. To define this transition relation, we define a set of extended programs that
have annotations for keeping track of which variables have already been visited in the
computation of the forall-loops. The set of extended programs consists of PURPLE-
programs in which the forall-loops are not restricted to an iteration over the whole
universe U, but where (for € W do P) is allowed for any subset W of U. We identify
(forall x do P) with (for z € U do P).

The transition relation — 4 is a binary relation on configurations. A configuration
is a triple (P, ¢, p), where P is an extended program, ¢: Varsg — 2 is an assignment

Assignment
(z:= tU, q,p) — 4 (skip, q, plx— [[tU]]qyﬂD
(b:=t",q,p) — . (skip,qlb—[t"]q,], p)

Composition

<P7 q, p> —A <Pl7 q/, p/>

(skip; P, q, p) —a (P, q, p) - a
(P;Q, a, p) —a (PQ, d,)

Conditional

(if tthen Pelse Q, q, p) — a4 (P, q, p) if [t]q,, = true
(if t then P else Q, q, p) — 4 (@, ¢, p) if [t]q,, = false

while-loop

(whiletdo P, q, p) — . (skip, q, p) if [t]q,, = false
(while tdo P, q, p) — .4 (P; whiletdo P, q, p) if [t]q,, = true

for-loop

(forz € Ddo P, q, p) — 4 (skip, ¢, p)
(forz € Wdo P, q, p) — 4 (P; forz € W\ {v}do P, q, plr—v]) foranyv € W

Fig. 1. Operational Semantics

of boolean variables and p: Vars — U is an assignment of pointer variables. The
inference rules defining — 4 appear in Fig. 1. In this figure, we denote by [t],, , the
evident interpretations of terms with respect to the variable assignments ¢ and p. The
operational semantics is standard for all but the for-loop. We note, in particular, that
the rules for the for-loop make the transition system non-deterministic.

We say that a program P is strongly terminating if for all A the computation
of P on A always terminates, i.e. for all ¢ and p there is no infinite reduction se-
quence of — 4 starting from (P, ¢, p) and in particular there are p’ and ¢’ such that
(P, q, p) —2 (skip,¢', p’) holds.

To define what it means for an L-model to be recognised by a program, we choose
a distinguished boolean variable result that indicates the outcome of a computation.

Definition 3 (Recognition). A ser X of L-models is recognised by a program P, if P
is strongly terminating and, for all L-models A and all p, p', q and ¢ satisfying
(P, q, p) —7% (skip,q', p'), one has ¢ (result) = true if and only if A € X.

Our notion of recognition should not be confused with the usual definition of accep-
tance for existentially (nondeterministic) or universally branching Turing machines; in
contrast to those concepts it is completely symmetrical in X vs. X. If the input is in X
then all runs must accept; if the input is not in X then all runs must reject. In particular,

not even for strongly terminating P can we in general define “the language of P”. A
program whose result depends on the traversal order does not recognise any set at all.

3.3 Basic Properties

In contrast to formalisms that depend on a global ordering, PURPLE is closed under
isomorphism. This is formulated by the following lemma, in which we write o P for
the program obtained from P by replacing each occurrence of (for x € W do P) by
(for € oW do P). Note that if P is a PURPLE-program proper, i.e., not an extended
one, then o P = P holds.

Lemmad4. Let 0: U — V be an isomorphism of L-models. Then (P,q,p) —u
(P',q, p') implies (cP,q,0 0 p) —v (P, q ;00 p).

We omit the proof, which is a straightforward induction on derivations.
Another property of PURPLE that is useful for studying its expressivity is that on
finite models all while-loops can be eliminated.

Lemma 5. For any program P with labels in L, there exists a while-free program P’
that recognises the same sets of finite L-models.

Proof sketch. If P is not strongly terminating then it does not recognise any set of L-
models, and we can take P’ to be, e.g. ((forall z do skip); result := (z = y)).

For the case where P is strongly terminating, note that a program with boolean
variables in B and graph variables in M can assume no more than 2!5! . |U|IMI distinct
states. Therefore, no while-loop can be executed more often than this number, as it
would otherwise go into an infinite loop. Hence, we can transform P into an equivalent
while-free program by unrolling each while-loop into | M| iterated forall-loops that
execute the loop body up to 2/Z! - |U|IM] times. O

4 Related Models of Computation

Based on the intuition that computation with logarithmic space amounts to computation
with a constant number of pointers, a number of formalisms of pure pointer algorithms
have been proposed as approximations of LOGSPACE.

4.1 Jumping Automata on Graphs

Cook & Rackoff [2] introduce Jumping Automata on Graphs (JAGS) in order to study
space lower bounds for reachability problems on directed and undirected graphs. Jump-
ing automata on graphs are a model of pure pointer algorithms on locally ordered graphs.
Each JAG may be described as a forall-free PURPLE-program over the operation la-
bels succy, succa, ...and vice versa. Therefore, a JAG may move on the graph only by
traversing edges and by jumping one graph variable to the position of another variable.
As a result, JAGs can only compute local properties of the input graph. If, for instance,
all the graph variables are in some connected component of the input graph then they
will remain in it throughout the whole computation.

Cook & Rackoff show that it is possible to prove lower bounds on the expressivity of
JAGS [2]. They show that both on directed and on undirected graphs reachability cannot
be solved by them. Together with the local character of JAG computations, this can be
used to show that many natural LOGSPACE-properties of graphs cannot be computed
by JAGs. For instance, JAGs cannot compute the parity function and they cannot decide
whether or not the input graph is acyclic.

While PURPLE is more expressive than JAGs, we hope that nevertheless separation
results along the lines of the existing ones for JAGs, e.g. [2, 4], could be achievable for
PURPLE by further elaborating the pumping techniques used to establish those.

One criticism of Jumping Automata on Graphs as a computation model is that JAGs
are artificially weak on directed graphs. Since, with the operations succy, succs, ...,
edges can only be traversed in the forward direction, there is no way for a JAG to reach a
node that has only outgoing edges, for example. One solution to this problem is to work
with graphs having a local ordering both on the outgoing and on the incoming edges of
each node, so that edges can be traversed in both directions [5]. The forall-loop of
PURPLE represents another possible solution, since we can use it to iterate over all the
nodes that have an edge to a given node, as we have shown in Sect. 3 above.

4.2 Deterministic Transitive Closure Logic

In the context of descriptive complexity theory DTC-logic was introduced as a logi-
cal characterisation of LOGSPACE on ordered structures [9]. The formulae of this logic
are built from the connectives of first-order logic and a connective DTC for determin-
istic transitive closure. The formula DTC[p(x, y)](s,t) expresses that, for all vari-
able assignments v, the pair ([s],, [t].) is in the transitive closure of the relation
{(u,v) | A =, plu,v] AVz. plu, z] = z = v}, see e.g. [9].

While on structures with a totally ordered universe DTC-logic captures all of
LOGSPACE, it is strictly weaker on unordered structures. A typical example of a prop-
erty that cannot be expressed without an ordering is whether or not the universe has an
even number of elements. If graphs are represented without any ordering by an edge
relation E(—, —), then DTC logic on graphs is very weak indeed. Gridel & McColm [8]
have shown that there exist families of graphs on which DTC without any ordering is no
more expressive than first-order logic.

Unordered DTC logic is nevertheless interesting, since on locally ordered graphs it
captures an interesting class of pure pointer algorithms. Locally ordered graphs may be
used in the logic by allowing, in addition to the binary edge relation E(—, —), a ternary
relation F'(—, —, —), such that F'(v, —, —) is a total ordering on {w | E(v, w)} [5], for
any v. With such a graph representation, DTC can encode JAGs and it is strictly more
expressive, since it allows first-order quantification [5]. With suitable restrictions on the
formulae, it is furthermore possible to characterise smaller classes of pointer algorithms
on locally ordered graphs, such as the class given by Tree Walking Automata [11].

We next observe that PURPLE subsumes DTC logic on locally ordered graphs.

Proposition 6. For each closed DTC formula o for locally ordered graphs there exists
a program P, such that, for any finite locally ordered graph G, G = ¢ holds if and
only if P, recognises A(G).

First-order quantifiers can be evaluated directly using the forall-loop. To see that
DTC[e(x,y)](a, b) can be evaluated, note that using the forall-loop we can iterate
over all tuples vy, so that we can compute the unique y such that ¢(x, y) holds, if such
a unique y exists, and we can recognise when such a unique y does not exist.

The converse of this proposition is not true, of course, since there is no DTC-formula
that expresses that the input graph has an even number of nodes [5].

Although DTC-logic on locally ordered graphs is interesting, there are still many
open questions regarding its expressive power. As far as we know, it is not known if
DTC-logic on locally ordered graphs can express directed or undirected reachability.
The best result we know is that of Etessami & Immerman [5], who show that undirected
reachability cannot be expressed by a formula of the form DTC[p(x, y)](s, t), where ¢
is a first-order formula (without a total ordering not every formula can be expressed in
this way).

One reason for the lack of results on the expressive power of DTC on locally ordered
graphs may be that at present there are no simple Ehrenfeucht-Fraissé games for it; and
such games are the main tool for proving inexpressivity results in finite model theory.
Most of the existing results have been proved either directly or by reduction to a proof
that uses automata-theoretic techniques. Etessami & Immerman, for example, obtain
their inexpressivity result for undirected reachability by reduction to the corresponding
result of Cook & Rackoff for JAGs. The relative success of automata-theoretic methods
is part of the motivation for studying the programming language PURPLE.

Furthermore, when viewed as a model of pointer algorithms, DTC logic is some-
what unnaturally restricted. To implement universal quantification, say on a LOGSPACE
Turing Machine, one needs to have a form of iteration over all possible pointers. If it is
possible to iterate over all pointers, then it should also be possible to write a program for
the parity function, even without any knowledge about a total ordering of the pointers.
But this cannot be done in DTC. If we view the universal quantifier as a form of iteration
that works without a total ordering, then it is more restricted than it needs to be.

The problem that a logic cannot express counting properties such as parity is of-
ten addressed in the literature by extending the logic with a totally ordered universe of
numbers (of the same size as the first universe) and perhaps also counting quantifiers,
see e.g. [5,9]. Such an addition appears to be quite a jump in expressivity. For instance,
in view of Reingold’s algorithm for undirected reachability, it is likely that undirected
reachability becomes expressible in such a logic [Ganzow & Gridel, personal commu-
nication]. However, we believe that this problem is not expressible in PURPLE and in
view of the Prop. 6 also not in DTC.

Another option of increasing the expressive power of DTC to include functions such
as parity is to consider order-independent queries [9]. An order-independent query is a
DTC formula that has access to a total ordering on the universe, but whose value does
not depend on which particular ordering is chosen. Superficially, there appears to be
a similarity to the forall-loop in PURPLE. However, order-independent queries are
strictly stronger than PURPLE. They correspond to the version of PURPLE, in which
each program is guaranteed that all forall-loops iterate over the universe in the same
order, even though this order may be different from run to run.

S Counting

Our goal in this section is to show that the behaviour of an arbitrary program on the
discrete graph with n nodes can be described abstractly and independently of n. From
this it will follow that PURPLE-programs are unable to detect whether n has certain
arithmetic properties such as being a power of two.

Write G, for the discrete graph with n nodes and write V,, = {1, ..., n} for its set
of nodes. Since this graph has constant degree 0, the L-model with universe V,, induced
by it does not have any operations.

Fix a finite set M of graph variables. We show that no program with graph variables
in M can recognise the set of all graphs G,, where n is a power of two. Since M is
arbitrary, this will be enough to show the result for all PURPLE-programs.

The proof idea is to show that whether or not a (while-free) program P accepts G,
for sufficiently large n depends only on the initial value of boolean variables, the ini-
tial incidence relation of the pointer variables and the remainder modulo [of the graph
size n for some [. In order to prove this by induction on programs we associate to
each program P an abstraction [P], which given the initial valuation of the boolean
variables qg, the initial incidence relation Fy and the size n modulo [yields a triple
(¢, E, f) = [P](q0, Eo,n mod [) that characterises the final configuration of a compu-
tation as follows: q is the final valuation of the boolean variables, F is the final incidence
relation of pointer variables, and f: M — M + {fresh} is a function that tells for each
variable x whether it moves to a “fresh” node, i.e. one that was not occupied at the start
of the computation, or assumes the position that some other variable f(x) € M had
in the initial configuration. The exact position of the “fresh” variables will of course
depend on the order in which forall-loops are being worked off. In fact, we will show
that with an appropriate choice of ordering any position of the “fresh” variables can be
realised, so long as it respects F.

For example, the abstraction of the program (z :=x; forall x do y:=x) would
map (qo, Fo,1) to (qo, F, f), where E is the equivalence relation generated by (z,y),
and f is given by f(x) = f(y) = fresh and f(z) = x. This means that for any n large
enough, the program has a run on GG, that ends in a state where z assumes the position
of x in the start configuration and where = and y lie on a node not occupied in the start
configuration. Moreover, E specifies that x and y must lie on the same node.

Notice that the abstraction characterises the result of some run of the program. In
the example, there also exists a run in which the last node offered by the forall-
loop happens to be the value of z, in which case z, y, z are all equal. The purpose of
the abstraction is to show that certain sets cannot be recognised. Since for a set to be
recognised the result must be the same (and correct) for all runs it suffices to exhibit
(using the abstraction) a single run that yields a wrong result. This existential nature of
the abstraction is made more precise in Def. 10 and Lemma 11.

Definition 7. Ler X' denote the set of equivalence relations on M. For each environ-
ment p we write [p| € X for the equivalence relation given by x[ply < p(z) = p(y).
Since the meaning of a boolean term t depends only on the induced equivalence rela-
tion, we define [tP], g as [tB],,, for any p with [p] = E € X.

Definition 8. The set F' of moves is given by F := M — M + {fresh}.

The intention of a move f € F is that if f(x) = y # fresh holds then variable x is set
to the (old value of) variable y and if f(x) = fresh holds then z is moved to a fresh
location. This is formalised by the next definition.

Definition 9. Ler p, p’': Vars — V, for some n and let E' € X and f € F. We say
that p' is compatible with (E’, p, f) if [p'] = E' holds and for all x € M we have

- f(x) =y # fresh implies p'(x) = p(y); and
- f(x) = fresh implies p'(z) & im(p).

In the rest of this section, we write () for the set Varsg — 2 of boolean states.
Definition 10. Ler P be a program, k,1 > 0 and
B:QxXXxZ/IZ—QxXxF

be a function. Say that (B, k,l) represents the behaviour of P on discrete graphs if for
alln >k, q € Q and p: Vars — V,, there exists p': Vars — V,, with

(P,q,p) —¢, (skip,q’,p'),
such that p' is compatible with (E', p,) whenever B(q, [p],n mod 1) = (¢', E’, f).

Notice that in contrast to the definition of recognition we only require that for some eval-
uvation of (P, q, p) the predicted behaviour is matched. This is appropriate because the
intended use of this concept is negative: in order to show that no program can recognise
a certain class of discrete graphs we should exhibit for each program a run that defies
the purported behaviour. Of course, this also helps in the subsequent proofs since it is
then us who can control the order of iteration through forall-loops.

Lemma 11. Suppose (B, k, 1) represents the behaviour of P on discrete graphs. Then
whenever n > k and q € Q and p: Vars — V,, and B(q,[p],n mod 1) = (¢, E', f)
then (P,q, p) — ¢, (skip, ¢, p1) holds for all py compatible with (E', p, f).

Proof. Choose p’ compatible with (£, p, f) that satisfies (P, ¢, p) —¢ (skip, ¢, p’).
Such p’ must exist by the definition of “represents.” We have p’(z) = p(f(x)) = p1(x)
whenever f(x) = y # fresh holds and p’(x), p1(x) & im(p) whenever f(x) = fresh
holds. Hence we can find an automorphism o : G,, — G, satisfying 0 o p = p and
o o p’ = p1. The claim then follows from Lemma 4. a

Theorem 12. There exist numbers k., (depending on the number of variables in M)
such that each while-free program P with graph variables in M is represented by
([P], k,1) for some function [P].

Proof. Put N = |Q| - | 2| - 2/MI'Ml and k = 3|M| + N and [= N!.

We prove the claim by induction on P. For basic programs the statement is obvious.
Case P = Py; P». Suppose we are given (¢, E, t) where t € Z/IZ. Write [P1](q, E,t) =
(q1, Eq, fl) as well as [[PQ]](ql, FEr, t) = (QQ, FEs, fz) Define f eF by

f(@) = f1(fa(2)), if fo(x) € M;
f(x) = fresh, if fo(x) = fresh

Put [P](q, E,t) = (g2, Ea, f). Fix some n with n mod [= t and p: Vars — V,, with
[p] = F and, using the induction hypothesis, choose p; compatible with (E1, p, f1)
and po compatible with (Es, p1, f2). Invoking Lemma 11 we may assume without loss
of generality that fo(z) = fresh implies pa(z) ¢ im(p). We now claim that po is
compatible with (Es, p,), which establishes the current case. To see this claim pick
x € M and suppose that fo(x) = y and fi(y) = z € M. Then f(z) = z and
p2(z) = p1(y) = p(z) as required. If fo(z) = fresh then f(z) = fresh and p2(x) ¢
im(p) by assumption on ps. If, finally, fo(z) = y € M and fi(y) = fresh then
p2(x) = p1(y) & im(p) by compatibility of p;.

Case if s® then P; else P,. Define [P](q, E,t) = [Pi](q, E,t) when [s],r =
true and [P] (¢, E, t) = [P] (g, E,t) when [s], g = false.

Case forall = do P;. We note that £ > 3| M| holds. Now, given (¢, E, t) choose
n minimal with n > k and n mod ! = ¢ and some p: Vars — V,, with [p] = E
and assume w.l.o.g. that im(p) C {1,...,|M|}. We then iterate through the graph
nodes {1, ..., n} in ascending order. Fresh nodes are chosen from {| M |41, ..., 3|M]|}.
Since there are only | M| variables we have enough space in this interval as to satisfy
any request for fresh nodes possibly arising during the evaluation of P;. Formally, we
choose sequences p; and g; in such a way that

L po=p,q =g
2. (P1, qi, pile—it1]) — ¢, (skip, ¢it1, pit1)s
3. forally € M, p;41(y) & im(p;[x+— i+1]) implies p;41 € {|M|+1,...,3|M|}.

That such sequences exist follows from the induction hypothesis and Lemma 11.
For I € ¥ define It = I\ x U{(z,x)}, where I \ z is I with all pairs involving x
removed.
Putting E; = [p;] we then get [p;[z — i+1]] = E; forall i > 3| M| and thus, again
fori > 3|M|:
(@i+1, Bit1, firr) = [P1](ai, B, 1)

for some sequence f;.

Thus, for ¢ > 3|M]| the incidence relations E; 1 no longer depend on p; itself but
only on the previous incidence relation F; (and the valuation of the boolean variables).

Choose now [such that p,, is compatible with (E,,, p, f) and define [P](q, E,t) =
(qna En7 f)

Now we have to show that indeed ([P], k,{) represents the behaviour of P on
discrete graphs. To this end fix m > n > k with mmod! = ¢ = nmod! and
X € Vars — V,, with [x] = E.

In view of Lemma 4 we may assume x (z) = p(x) forall x € M so that in particular
im(x) C {1,...,|M|}. We can now iterate through G,, in ascending order in exactly
the same fashion yielding sequences I;, x;, ; such that

L xo=x.10 = ¢

2. (Pryris xilw = it1l]) —¢ (SKip, Tig1s Xit1)s

3. xi(y) = pi(y) and ¢; = r; forally € M and i < n.

4. forally € M, xi+1(y) & im(x;[x— i+1]) implies x;4+1 € {|M|+1,...,3|M|}.

We put I; = [x;] and find (7541, Li1,9i+1) = [P1](r:, I;7,t) for some function se-
quence g;. Now consider the restriction of x; to {1,...,|M]|}, i.e., formally define
& ={(x,xi(z)) |z e M, xi(z) € {1,...,|M|}}. We note that £;; does not depend
upon x; but only on the incidence relation I; (and ¢; and ¢, of course). Indeed,

Cit1 ={(y:v) | gi+1(y) = 2, (2,0) € &}
for all i > 3|M|. In view of the choice of N there must exist indices 3| M| < t < t' <
3|M| + N = k such that v, = r and I; = Iy and & = & . But then we also have
Tt+d = Tt'+d and It+d = It’+d and §t+d = §t/+d for all d > 0 with ¢/ +d < m.
Now, since ' — t divides [we find that r; = r; and I; = I;» and § = &; as soon as
t' <k<n<i<i <mandi =4 modulol. Hence in particular, r,,, = r,, = ¢, and
I, =1, =FE,and¢,, =¢&,. Thus,

(P,x,q) —¢,, (SKiP,qn, Xm)
with x,, compatible with (E,,, p, f,,) as required. O

Corollary 13. Checking whether the input is a discrete graph with n nodes with n a
power of two is possible in deterministic logarithmic space but not in PURPLE.

Proof. To program this in LOGSPACE count the number of nodes on a work tape in
binary and see whether its final content has the form 10*. Suppose there was a PURPLE-
program P recognising this class of graphs in the sense of Def. 3. By Lemma 5 we can
assume that P is while-free. Then Theorem 12 furnishes ([P], k,) representing P
on discrete graphs. Let result be the boolean variable in P containing the return value.
Let n be a power of two such that n > k holds and n + [is not a power of two. Let
p, q be arbitrary initial values. Now, since P purportedly recognises GG,, we must have
[P](q,[p],n mod 1) = (¢, -, -) with ¢'(result) = true. Now let x be a valuation of
the variables in G, satisfying [p] = [x]. We then get (P, x,q) —¢,,, (skip,q’,),
which contradicts the assumption on P, since on all runs of P on G,,4; the value of the
boolean variable result would have to be false. Recall the explanation after Def. 3. O

A reader of an earlier version of this paper suggested an alternative, purportedly simpler
route to this result. From Theorem 12 one can conclude that if X is a property of discrete
graphs then the set {a” | G,, € X} is a regular set over the unary alphabet {a}; in fact,
every regular set over this alphabet arises in this way. Given that all iterations through n
indistinguishable discrete nodes look essentially the same and that the internal control
of a PURPLE-program is a finite state machine it should not be able to do anything more
than a DFA when run on a unary word.

We cannot see, how to turn this admittedly convincing intuition into a rigorous proof
and would like to point out that a PURPLE-program can test for equality of nodes, thus
it can store certain nodes from an earlier iteration and then find out when they appear
in a subsequent one. Indeed, if the order of traversal were always the same then we
could use this feature to define a total ordering on the nodes and thus program all of
LOGSPACE including the question whether the cardinality of the universe is a power of
two. This would be true even if the traversal order was not fixed a priori but the same for
all iterations in a given run of a program. Thus, any proof of Theorem 12 must exploit
the fact that an input is recognised or rejected only if this is the case for all possible
traversal sequences. Doing so rigorously is what takes up most of the work in our proof.

6 Conclusion

We believe that PURPLE captures a natural class of pure pointer programs within
LOGSPACE. By showing that PURPLE is unable to express arithmetic properties, we
have demonstrated that it is not merely a reformulation of LOGSPACE but defines a stan-
dalone class whose properties are worth of study in view of its motivation from practical
programming with pointers.

On the one hand, PURPLE strictly subsumes JAGs and DTC logic and can therefore
express many pure pointer algorithms in LOGSPACE. On the other hand, Reingold’s
algorithm for st-reachability in undirected graphs uses counting registers of logarithmic
size. We believe that it is not possible to solve undirected reachability in PURPLE and
therefore not in DTC-logic. The details will appear elsewhere.

We also consider it an important contribution of our work to have formalised the
notion that the order of iteration through a data structure may not be relied upon. Such
provisos often appear in the documentation of library functions like Java’s iterators. Our
notion of recognition in Def. 3 captures this and, as argued at the end of Sec. 5, it mea-
surably affects the computing strength (otherwise all of LOGSPACE could be computed).

The appearance of “freshness” and the accompanying V3-coincidence expressed in
Lemma 11 suggest some rather unexpected connection to the semantic study of name
generation and a-conversion [6, 12]. It remains to be seen whether this is merely coinci-
dence or whether techniques and results can be fruitfully transferred in either direction.

References

1. S.A. Cook and P. McKenzie. Problems complete for deterministic logarithmic space. Journal
of Algorithms, 8(3):385-394, 1987.
2. S.A. Cook and C. Rackoft. Space lower bounds for maze threadability on restricted ma-
chines. SIAM Journal of Computing, 9(3):636-652, 1980.
3. H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
4. J. Edmonds, C.K. Poon, and D. Achlioptas. Tight lower bounds for st-connectivity on the
NNJAG model. SIAM Journal of Computing, 28(6):2257-2284, 1999.
5. K. Etessami and N. Immerman. Reachability and the power of local ordering. Theoretical
Computer Science, 148(2):261-279, 1995.
6. M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13:341-363, 2002.
7. G. Gonthier. A computer-checked proof of the four-colour theorem. Available at
http://research.microsoft.com/ “gonthier.
8. E. Gridel and G.L. McColm. On the power of deterministic transitive closures. Information
and Computation, 119(1):129-135, 1995.
9. N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.
10. Jan Johannsen. Satisfiability problems complete for deterministic logarithmic space. In
STACS, pages 317-325, 2004.
11. F. Neven and Th. Schwentick. On the power of tree-walking automata. In ICALP, pages
547-560, 2000.
12. A.M. Pitts and I.D.B. Stark. Observable properties of higher order functions that dynamically
create local names, or: What’s new? In MFCS, LNCS 711, pages 122—-141. Springer, 1993.
13. O. Reingold. Undirected st-connectivity in log-space. In STOC, pages 376-385, 2005.

